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Supplementary Figures
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Fig. S1. UMAP visualisations of the MNIST data set with default parameters and
min dist set to 0.5, 0.1 (default), 0.01, and (a, b) manually set to (1, 0.3). Each subplot
shows the a and b values of the UMAP kernel k(d) = (1 + ad2b)−1. With min dist

below 0.01 the b as a function of min dist hardly changes.
As a side note, one can obtain an MNIST embedding very similar to the one that

UMAP gives with default settings using t-SNE with late exaggeration of about 4, i.e.
multiplying all attractive forces by 4 after the early exaggeration period (first 250
iterations) is over. This makes sense, given that the main difference between t-SNE
and UMAP is in the repulsive term.
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Fig. S2. Toy example with ten “dumbbell”-shaped clusters from Figure 2, here embed-
ded with α = 0.1. Top-left plot shows the result after 1000 gradient descent iterations
(default). Note that the dumbbell shape is lost: whereas the number of visible clusters
increased as α was lowered from 100 to 0.5 (Figure 2), it decreased when it was further
lowered to 0.1. We believe the reason for this is that the strong repulsion between
dumbbells “squashes” them in the beginning of optimisation into very compact blobs.
It is likely that longer optimisation would resolve the dumbbell shapes. This is difficult
to test because the kernel with α = 0.1 is extremely wide and flat, leading to slow
convergence. Top-right plot shows the result after 5000 iterations. Here a few outlying
points get pushed to the periphery. Zooming-in to the main 10 clusters (bottom-left)
still does not resolve the dumbbell shapes. Further zooming in on one of the dumbbells
(bottom-right) shows that the points are squashed into 1D which may be a sign of poor
convergence.

In a separate sets of experiments, we observed the similar phenomenon with MNIST:
α = 0.2 after 1000 iterations yielded fewer clusters than α = 0.5. Our conclusion is
that smaller values of α should be used with caution.



Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations 19

40 20 0 20 40

40

20

0

20

40

= 0.5
1000 iterations

200 100 0 100 200

200

100

0

100

200

= 0.5
10000 iterations

5 0 5 10 15 20

20

25

30

35

40

= 0.5
1000 iterations

Zoom-in on digit 4

25 0 25 50 75

100

120

140

160

180

= 0.5
10000 iterations

Zoom-in on digit 4

Fig. S3. t-SNE visualisation of the MNIST dataset with α = 0.5. The top-left panel
is identical to Figure 4C; it was obtained with 1000 gradient descent iterations (the
default value). The top-right panel corresponds to 10 000 iterations and has many more
isolated sub-clusters. This can also be seen in the bottom row showing the respective
zoom-ins into the digit “4”. At the same time, the embedding after 1000 iterations is
not misleading and is simply a coarser-grained version of the embedding after 10 000
iterations.

Using 10 000 iterations is impractical: whereas 1000 iterations were finished in 1.5
minutes, 10 000 iterations took 4 hours 30 minutes. This is because FIt-SNE inter-
polation scheme uses regular interpolation grid with the number of nodes growing
quadratically with the embedding size. While the left embedding is contained within
[−50, 50]2, the right one expands to [−200, 200]2. In principle, an implementation based
on the fast multipole method (FMM) could be developed to dramatically accelerate
the gradient computation in this setting where most of the embedding space is “empty
space”, but current FIt-SNE implementation does not support it.

Note that the standard t-SNE embedding with α = 1 also expands much further
after 10 000 iterations, compared to the 1000 iterations. However, with α = 1 it does
not resolve additional sub-clusters, at least in MNIST.



20 D. Kobak et al.

50 0 50

50

25

0

25

50

= 0.5

20 0 20

20

10

0

10

20

= 0.5 with extra
Gaussian clusters

20 0 20

20

10

0

10

20

= 0.5, exag. 1.75

Fig. S4. t-SNE visualisation of a MNIST subset consisting of all images of digit “4”
(n = 6 824) (perplexity 50). Left: α = 0.5, the same as in Figure 4C. Note the large
number of isolated clusters. We believe this happens because the embedding rapidly
expands to a larger area, compared to Figure S3 (bottom-left). One evidence for that
is that re-running t-SNE after adding several random Gaussian clusters with n = 7 000
each, roughly recovers the shape of the digit “4” archipelago from the full MNIST
embedding (middle). Right: α = 0.5 and exaggeration factor 1.5 [7], i.e. all attractive
forces are multiplied by 1.5 after the end of the early exaggeration phase (during the
early exaggeration they are multiplied by 12). This roughly recovers the sub-clusters
from the full MNIST embedding (Figure S3). The relationship between α and exagger-
ation remains for future work.


