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1 Derivation of Posterior Covariance and Correlation

We can construct the posterior covariance [2] of f∗i and f∗j as
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where Ki+j = Ki +Kj , K
∗∗
i+j = K∗∗i +K∗∗j , and k∗i+j = k∗i + k∗j . Therefore we

have the posterior cross covariance [2] between f i and f j as
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where Cov
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)
definitely is not equal to zero and ρ∗ij denotes the

normalized posterior correlation of components f i and f j . The i-th SM component
is of cause independent from the j-th SM component when ρ∗ij = 0 otherwise
they are dependent. Thus we think all SM, additive, and manually designed
compositional kernels should have some kind of dependency from their nonzero
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posterior covariance. We will show such nonzero ρ∗ij between components f i and
f j in SM in the experiment section. Note that Equation (1) tells us any linearly
combined kernels in GPs, on the prediction stage, should be implicitly impacted
by the posterior cross covariance between components.

2 Proof of Positive Semi-definite for GCSM

Using the Fourier transform, before making the spectral density symmetric, we
have, by the distributivity of the convolution operator, that the GCSM kernel is:
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where Q is the number of auto-convolution components in the GCSM, ι̇ is
the imaginary unit, cij = wijaij is the cross contribution incorporating cross
weight and cross amplitude to encodes the significance of dependency between
components in GCSM.

Kernel kGCSM(τ) is definitely positive semi-definite if and only if its spectral

density k̂GCSM(s) is positive semi-definite [1,3]. Here, given any finite set of
non-zero vectors [z1, ..., zN ]> ∈ CN×P with complex entries, s ∈ RP , we have
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where z†n denotes the conjugate transpose of zn. Thus the sum of cross spectral
densities satisfy the positive definite condition. Therefore the proposed GCSM
kernel kGCSM(τ) must be positive semi-definite.

In particular, from the definitions of SM and GCSM, for the diagonal elements
of the trained kernel matrix (τ = 0), we have

γij(τ = 0) = aij (7)
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The diagonal values of kernel matrix in SM are not affected by the hyper-
parameters µ, Σ. Instead in GCSM the diagonal values are affected by all
hyper-parameters.

Since the complex conjugate of a positive semi-definite kernel, and the sum of
two positive semi-definite kernels is still positive semi-definite, the symmetrized
kGCSM(τ) = (kGCSM’(τ) + kGCSM’(τ))/2 is also positive semi-definite.

3 Additional Experimental Results

Posterior functions of SM are with all those affected by the dependency among SM
components, especially the uncertainty who affected by the posterior covariance.
From Figures 1, 2, 3 and also posterior covariance analysis, SM kernel doesn’t
hold the conditional independence. Thus for arbitrary SM component we have
f∗i |f i 6= f∗i |f i +f j . This conclusion can be applied on most of linearly combined
kernels in GP. An important finding is that the posterior dependency helps
correct trends and introduces much uncertainty.

Fig. 1. Left: f∗
10|f10; right: a conditional f∗

10|
∑10

i=1 f i
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Fig. 2. Left: f∗
2|f2; right: f

∗
2|
∑10
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Fig. 3. Left: f∗
7|f7; right: f

∗
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