
4

Covering Array
Construction

Mathematical
Approach

Greedy
Computational

Approach

One-test-at-a
time Method

One-parameter-
at-a-time Method

Figure 3. Classification of Existing Work

Referring to Figure 3, existing work can be classified into two main approaches namely mathematical and
greedy computational approaches. Mathematical approach often exploits mathematical properties of orthogonal
arrays to construct efficient covering arrays [11, 12]. Examples of strategies that originate from the extension of
mathematical concepts called Orthogonal Array include recursive CA[13] and TConfig [14]. Although typically
producing fast and optimal solution, the main limitation of the OA solutions is the fact that these techniques
places restriction on the selection of values and is confined to low interaction (i.e. t <3), thus, limiting its
applicability for small scale system configuration. Greedy computational approaches exploit the computing
power in order to generate the required covering array in the manner that each solution results from the greedy
selection of the required interaction. The greedy computational approach can be categorized further into one-
parameter-at-a-time (OPAT) and one-test-at-a-time (OTAT) methods [15].

In the former case, the OPAT method begins with an initial array comprising of several selected parameters. The
array is then horizontally extended until reaching all the selected parameters based on the required interaction
coverage. This is followed by vertical extension, if necessary, to cover the remaining uncovered interactions.
The iteration continues until all the interactions are covered. The in-parameter-order (IPO) strategy [16] is
perhaps the pioneer strategy that adopts the OPAT approach (hence termed IPO-like). The IPO strategy was
later generalized into a number of variants IPOG [17], IPOG-D [18], IPOF [19] and IPO-s [20]. Owing to its
simplicity, IPO has also been adopted by other researchers, notably in the development of MIPOG [21-23].
Unlike IPO and its family, MIPOG removes inherent dependencies between horizontal and vertical extensions
in order to permit parallel covering array generations on multiple-core machines.

In the latter case, the OTAT method normally iterates all the combinatorial elements and generates a complete
test case per iteration. While iterating, the strategy greedily checks whether the generated solution is the best fit
value (i.e. covering the most uncovered interactions) from a list of potential solution. AETG [24] is the the first
covering array construction strategy that adopts the OTAT method (hence, termed AETG-like [25]). Initially,
AETG constructs all the required interactions. Then, AETG iterates in order to generate a number of candidate
solutions. For each cycle, one candidate is greedily selected as a solution (i.e., covering the most uncovered
interactions). The generation and selection process continues until all the interactions are covered. Many
variants of AETG have emerged including mAETG [26], mAETG_SAT [27] and TVG [28]. Similar to AETG,
GTWay [29, 30] also adopts the one-test-at-a-time approach to generate the final test suite. Unlike AETG,
GTWay permits the use of actual parameter values as a symbolic string and supports automated execution of test
cases. Jenny [31] incrementally generates a solution that covers the 1-way interaction. Later, the solution is
extended to cover 2-way interactions and so forth. The process is repeated until all the required interactions are
covered. Intelligent Test Case Handler (ITCH) [32] relies on exhaustive search to construct the covering array of
interests. Owing to its exhaustive search algorithm, ITCH execution typically takes a long time and results are
often not optimized. PICT [33, 34] implements flexible selection of interaction to be covered in the covering
array. On a negative note, PICT randomly selects the corresponding interaction combinations to form the
complete covering array resulting into poor test sizes in many instances as compared to other strategies.

Recently, much effort has been focused on the use of meta-heuristic algorithms as part of the greedy
computational approach for covering array construction [35-39]. Complementing both the OPAT and OTAT
methods, meta-heuristic based strategies is often superior in terms obtaining optimal covering array size but
there may be tradeoffs in terms of computational costs.

Although meta-heuristic strategies can implement either the OPAT or the OTAT method, existing work appears
to favor the OTAT method. Meta-heuristic based strategies often start with a population of random solutions.

