
18 R. Koner et al.

A Details on Model Training and Inference

A.1 Training Details

In order to optimize the training objective given by Equation (4), we use REIN-
FORCE [37] to obtain the gradient approximation

ĝ =

T−1∑
t=0

∇θ log πθ(At|St)(

T−1∑
t′=t

Rt′γ
t
′
−t −B(St)) , (6)

where γ is the discount factor for the reward. The gradient of the weights are
aggregated over multiple rollouts. To reduce the variance, we adopt a moving
average baseline function B(St). The baseline function is an approximation of the
value of a state St. We could have employed more sophisticated methods such
as advantage network or actor-critic algorithm. However, we find the current
baseline works sufficiently well. Formally, the baseline function consists of a
non-trainable variable b and a hyperparameter λ. The baseline is updated by
bt+1 = λbt + (1− λ)rt at each optimization step. Another technique that affects
the training speed is the reward normalization. Concretely, the accumulated
rewards at each time step for each rollout are collected and normalized after
subtraction of the baseline value.

We introduce a regularization term on the entropy of the resulting probability
distribution from the policy network πθ(At|St), which enforces that the agent
explores the SG. The regularization is controlled by a hyperparameter β. In
addition, we apply exponential decay to β during training so that β converges
to zero.

Moreover, we use the chain rule to calculate the gradients of the param-
eters of the graph encoder (GAT) θGAT and the question encoder (Trans-
former) θTransformer. The weight updates can be performed via gradient ascent,
θ ← θ + ηĝ or more advanced optimization methods such as Adam [21].

A.2 Inference

Beam search is used to infer the answer to a given question. Our inference ap-
proach is based on evaluating how likely specific paths are appearing among all
possible paths with a fixed length. More specifically, given an input question, the
agent’s initial location is given by the hub node. At each time step, the agent
scores the next permissible actions based on the learned policy. The value of ac-
tion represents the transition probability from the current node to a target node.
Next, we keep the top k (also known as beam width) paths among all possible
transitions and move the agent to the corresponding targets. This computation
is iteratively performed until the maximum number of transitions is reached. In
the end, we obtain multiple rollouts ranked by the path probabilities. The target
node (i.e. the last node) of the path is regarded as an answer candidate. Unlike
Monte Carlo sampling which does not consider path probabilities, beam search
yields better answer candidates, as it always chooses the best choice within the
search region. The algorithm for inference is summarized in table 2.

Graphhopper 19

Algorithm 1: Training regime

Input: Question Q, Scene Graph SG ⊂ E ×R× E
Model : Policy Network with θ := {θGAT , θTransformer, θAgent}, Baseline

with b

1 for i← 0 to N do // Loop over epochs

2 Initialize Q and SG with GloVe embeddings;
3 Q← GAT(Q) // Update the question with the question encoder

4 SG ← Transformer(SG) // Update the SG with the graph encoder

5 C ← [] // Initialize the trajectory buffer

6 for r ← 0 to N do // Loop over samples

7 τ ← [] // Initialize the trajectory

8 E0 ← hub // Initialize the start position

9 A0 ← dummy // Initialize the dummy start action

10 for t← 0 to T do // Loop over time steps

11 if t%∆ == 0 then // Restart and prompt the agent to the

hub node

// so that the agent is aware of its own action

12 Et+1 ← hub // Set next nodes to the hub node

13 At+1 ← dummy // Set next actions to the dummy return

action

14 end
15 Sample an action (At, Et+1) from dt τ .append(At, Et) // Extend

the trajectory

16 Et ← Et+1 // Move the agent to the next entity

17 end
18 C.append(τ) // Collect the trajectory

19 end
20 r ← R(C) // Gather rewards

21 g ←
∑T−1

t=0 ∇θ log πθ(at|st)(
∑T−1

t
′
=t

rt′ γ
t
′
−t − b(st)) // Approximate

gradients

22 θ ← θ + ηg // Update the policy network

23 b← b + (1− λ)r // Update the baseline function

24 end

Inference Complexity The inference of our method is computationally efficient.
Unlike other methods that need to iterate through each candidate answer for
a final prediction, we only need to run the inference once so that the score
of each answer is obtained. Let d denote the embedding dimension of the
words and entities. Analytically, the embedding stage has asymptotic complexity
O(|E|+ |R|+ |Q|). For the GAT, the implementation of a single attention head
and multi-head attention is similar. In particular, they have the same time com-
plexity O(|E|dd′

+ |R|d′
). The computation of the question encoding is given

by O(|Q|2d). It is efficient as it only runs once for each question and is used
for arbitrary times during random walks. Also, the length of the questions Q is
usually short (less than 30 words). Finally, during the random walk sampling,

20 R. Koner et al.

the agents complxity is given by O(T (D2 + |E|d)), where d is dominant. The
inference time depends largely on the path length.

Algorithm 2: Inference with beam search

Input: Question Q, Scene graph SG ⊂ E ×R× E
Output: Answer

1 Initialize Q and SG with GloVe embeddings;
2 Q← GAT(Q) // Update the question with the question encoder

3 SG ← Transformer(SG) // Update the SG with the graph encoder.

4 P ← [] // Initialize the probability register

5 τ ← [] // Initialize the trajectory

6 E0 ← hub // Initialize the start position

7 A0 ← dummy // Initialize the dummy start action

8 for t← 0 to T do // Loop over time steps

9 for r ← 0 to N do // Loop over rollouts

10 if t%∆ == 0 then // Restart and prompt the agent to the hub

node

// so that the agent is aware of its own action

11 Et+1 ← hub // Set next nodes to the hub node

12 At+1 ← dummy // Set next actions to the dummy return

action

13 end
14 Forward pass through the policy network to generate candidate actions

{(At, Et)} along with their probabilities {pi} τ .append({(At, Et)})
// Extend the trajectory

15 P .append({pi}) // Store corresponding probabilities

16 end
17 indicies← argmax(P, k) // Filter indices of top k probabilities

from P

18 τ ← τ [indices] // Choose top k paths ranked by their probabilities

19 Et+1 ← e ∈ τ // Conduct corresponding transitions

20 end
21 Prediction ← τ [0] // Predict the end entity of the top path as the

answer

A.3 Complexity Analysis

For analyzing the complexity of our method, we provide all the parameters
contained in the building blocks. Moreover, we present the number of operations
of a forward pass - the complete run that derives the answer from a given Q and
SG. They are listed in the table 3.

Graphhopper 21

Group Name No. Parameters No. Operations

Word Embeddings* Entity Ne × d O(N)
Relation Nr ×D O(N)

GAT Conv layer weight d×H1 O(BHNe)
Conv layer attention d×H1 O(BHNe)
Conv layer bias H1 O(BHNe)

Transformer Positional encoder d× d O(Ne)
Layer self attention (qkv) Ht(512)× d 3×Ht × d
Self attn norm (W, b) d 2× d
Layer enc attn Ht(512)× d 3×Ht × d
Enc attn norm (W, b) d 2× d
Pos ffn 1 (W, b) d× d + d d× d + d
Pos ffn 2 (W, b) d× d + d d× d + d
Pos ffn norm(W, b) 2d 2× d
Enc attn norm (W, b) d 2× d

Agent-MLP Dense 0 4d× 4d + 4d (H × 4d + 4d)× T
Dense 1 2d× 4d + 2d (H × 2d + 2d)× T

Agent-LSTM Lstm cell Wih 4d× 16d (4d× 16d)× T
Lstm cell ih 16d (16d)× T
Lstm cell Whh 4d× 16d (4d× 16d)× T
Lstm cell bhh 16d (16d)× T

Table 3. An overview of the number parameters and the asymptotic number
of operations for the individual modules. The batch size is indicated by B. T
corresponds to the number of time steps. D and H denote the embedding size
and hidden size, respectively. Blocks are marked with a ”*” if their weights are
not trainable.

B Additional Details on the Dataset GQA

In this section we describe various question category and their type. We list the
question based on semantic and structural categories. We further grouped them
based on their entity type like object, attribute, category etc. Table 4, describes
the detailed list of question category.

22 R. Koner et al.

Table 4. List of question examples in the GQA dataset.
Category Type Description Example

Semantics

Object Existence of object Are there any doors that are not made of
metal?

Attribute Property about an object Does the soap dispenser that is to the right of
the other soap dispenser have small size and
white color?

Category Identify an object class What kind of animal is standing?
Relation Relationship of object What is the food that is to the left of the

white object that is to the left of the choco-
late called?

Global Overall scene property Which place is it?

Structural

Query Open-form question What type of furniture is to the left of the
silver device which is to the left of the helmet?

Choose Choose from alternatives What are the floating people in the ocean do-
ing, riding or swimming?

Verify Simple yes/no question Are there statues above the brass clock that
is on the building?

Compare Comparison of objects Are the drawers made of the same material
as the cages?

Logical And/or operators Are both the giraffe near the building and the
giraffe that is to the left of the tray standing?

