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Don’t miss the Mismatch: Investigating the Objective Function Mismatch for Unsupervised Representation Learning
(Supplementary Material)

A Proofs

We measure our metrics on the mean losses during cross-validation instead of calculating the metrics for each round and taking the average. We proof that
both variants are equivalent for M3 while measuring SM3 on the mean losses leads to a lower bound, given that all models converge at step ;.
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B Additional Model and Training Details

CNN Encoders: We consider a family of convolutional encoders with four Conv-BatchNorm-ReLU layers. Filter widths are [32,64, 128, f] and paddings
are "valid”. For input sizes of 32 x 32 (Cifar10, Cifar100), kernel sizes are [3,3,3,2] and strides are [2,2,2,1]; for input sizes of 64 x 64 (3dshapes, PCam),
kernel sizes are [4,4,4,3] and strides are [2,2,2,2]. Weights are initialized with the standard TensorFlow initialization (kernel_initializer="glorot_uniform”,
bias_initializer="zeros™). We vary f in [4,32,128,256,512,1024] for our experiments on representation sizes. For all other experiments f = 256.

CNN Image Decoders: We consider a family of decoders with transposed convolutions with three TranConv-BatchNorm-ReL U layers followed by a
TranConv-BatchNorm-Sigmoid layer. Filter widths are [128,64,32,3] and paddings are “valid”. For input sizes of 32 x 32 (Cifar10, Cifar100), kernel
sizes are [4,4,4,3] and strides are [2,2,2,1]; for input sizes of 64 x 64 (3dshapes, PCam), kernel sizes are [4,4,5,4] and strides are [2,2,2,2]. Weights are
initialized with the standard TensorFlow initialization (kernel_initializer="glorot_uniform”, bias_initializer="zeros”).

CNN/ResNet Head for Rotation: For our CNN encoder we use a fully-connected layer with 4 neurons and softmax activation as head to predict the
four different rotations. We use the standard TensorFlow initialization (kernel_initializer="glorot_uniform”, bias_initializer="zeros”). For our ResNet de-
coder we initialize with (kernel_initializer=RandomNormal(stddev=.01), bias_initializer="zeros”).

CNN/ResNet Heads for Contrastive Learning: For our CNN encoder we use a two layer MLP with a FC-BatchNorm-ReLU layer followed by a FC-
BatchNorm-Softmax layer as projection head for contrastive learning. Number of neurons are [f,128]. We use the standard TensorFlow initialization
(kernel-initializer="glorot_uniform”, bias_initializer="zeros™). We vary f in [4,32,128,256,512,1024] for our experiments on representation sizes. For all
other experiments f = 256. For our ResNet head the number of neurons are [512, 128] and we initialize as in [9].

Target Models: For our linear target model we use a fully-connected layer with num_classes neurons and a softmax activation. For our two- and three-layer
nonlinear models we add layers consisting of [256] and [512, 256] hidden units with batch normalization followed by ReLu activations respectively. Weights
are initialized with the standard TensorFlow initialization (kernel-initializer=="glorot_uniform”, bias_initializer="zeros”).

Hardware: We carry out our experiments on two servers which contain four Nvidia GeForce RTX 2080 Ti GPUs respectively.

Mismatch Evaluation: In Table 4 we show additional details about training, evaluation and measurements.

Table 4 Information about measurements and training

Measurement Epochs ‘ Convergence Criterium Pretext Model Training Epochs Target Model Training Epochs ‘ Validation
Rep. Size, TMC, Augs
CAE(Cifar10) (0,5,20,50,100,...,400) Patience:3 400 500 5-fold cross-validation
DCAE(Cifar10) (0,5,20,50,100,...,400) Patience:3 400 500 5-fold cross-validation
CCAE(Cifar100) (0,5,20,50,100,...,400) Patience:6 400 500 5-fold cros: dation
CCAE(PCam) (0,10,50,100,150,200,300....,800) Patience:10 800 500 5-fold cros: tion
RCAE(PCam) (0,200,400....,2000) Patience:30 2000 500 5-fold cross-v: tion
SCLCAE(3dshapes) (0.10,50,100,150,200,300....,600) Patience:15 600 100 5-fold cross-validation
Target Task Type
CAE(3dshapes) (0,10,30,50,100.....400) Patience:3 400 100 5-fold cross-validation
DCAE(3dshapes) (0,10,30,50,100.....400) Patience:3 400 100 5-fold cross-validation
CCAE(3dshapes) (0,10,30,50,100....,400) Patience:3 400 100 5-fold cross-validation
RCAE(3dshapes) (0,10,30,50,100....,400) Patience:3 400 100 5-fold cross-validation
SCLCAE(3dshapes) (0,10,30,50,100.,...,600) Patience:3 600 100 5-fold cross-validation
Stability
CAEI100E(Cifar10) (0.1....,100) Epoch 100 100 500 5-fold cross-validation
CAE(Cifar10) (0,5,20,50,100....,400) Epoch 400 400 500 5-fold cross-validation
CAENoCrossVal(Cifar10) (0,5,20,50,100....,400) Epoch 400 400 500 5 x same split
ResNets
RResNet18(Cifar10) (0.50,100,200.,400....,4000) Patience:30 4000 600 5-fold cross-validation
SCLResNet18(Cifar10) (0,50,100,200,400. Epoch 4000 4000 600 3-fold cross-validation
SCLResNet18(Cifar100) (0.50,100,200.,400.....4 Epoch 4000 4000 600 3-fold cross-validation
SCLResNet18(PCam) (0,400,800,...,5000) Patience:60 5000 500 5-fold cross-validation
ResNets Rep. Size
RResNet18(Cifar10) (0,100,200....,1000,1200....,3000) Patience:30 3000 700 5-fold cross-validation

Under (Rep. Size, TMC, Augs) we refer to all models trained with different representations, target model complexities and aug-
mentations.
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C Additional Evidence

Table 5 Detailed version of CAE (Cifar10) and DCAE (Cifar10) from Table 1

CAE (Cifar10) DCAE (Cifar10)
ACC cSM3 MOFM ACC cSM3 MOFM
Rep. Size
2x2x4 27.947037 0.007000  0.0073%)7 | 28.067070  0.05T02  0.00755%
2x2x32 36.57 095 0.0700)  1.99%3% | 3620792 0.00Tp00  3.207102¢
2x2x128 4194709 0.20%052  10. 1012321‘ 41.797%%  0.06701L 551787
2x2x256 446000 0755 11147390 | 4542508 0.69%06 51750
2x2x512 4813703 043703 5.28T)00 | 49.047050  0.367g% 125717
%xleoii w 5142405 0247037 0255070 | 53.827030  0.035005  0.00100;
arget Model
FC 44697050 0755035 1114133 | 454270 0697070 5.17530%
2FC 56.724030  0.03508  5.6875% | 57.26%0%5  0.000000  5.1412%
ZFC 63.05°073  0.0370 0 3.94°005 | 63337035 000708 317030
ugmentations
All 44.6915:23 0.75;§;§§ 11. 14'%;% 4542;%;‘5?2 0.69§§:§§ 5. 17;%;3;‘
Nolitter 46.30%0" 0.99+: 10997} 47.27+; 050703  2.337h
NoJitterNoFli 46 48;8:2? 1 00+8:?1%7§ 12 51‘?3&2 47 38+8:§2 0 55+8g(1) 1 73+}1:ﬂ
p TP -0.75 U -0.60 174 ~9-0.44 ~~—0.55 Y136

Table 6 Detailed version of CCAE (Cifar100) and RCAE (PCam) from Table 1

CCAE (Cifar100) RCAE (PCam)
ACC cSM3 MOFM ACC cSM3 MOFM MM3
Rep. Size
2x2x4 9.66703% 0287013 1.547%0 | 67.627h0%  5.38TF1S 415737 —22.2673708
2x2x32 17.63503% 06500 364t | 72830107 334500 7.920 5% —21.097350
2x2x128 2436705 0517050 0.8170 | 78.177°0%  1.03f05  4.047330 —2344713;23
2x2x256 2836107 0171037 0.00%0{0 | 79.557 105 044707 0.00750  —27.601 7%
2x2x512 32.02702)  0.007005  0.007000 | 80.807098  0.18%01  0.007y5  —28.037)3
ixzmi)ﬁ w 34.89703  0.007000  0.007000 | 82207078 009755 0.00705  —26.56%] 1%
arge! odel

FC 32.02;%;2 % 0.00;%; 0.00;§;§§ 78. 17£§;§§ 1 .03;%;;? 404;3;2(5& 72347;@;%
2FC 36.017°030  0.08% 05 0001000 | 8299709 0317031 076700 —28.5670%
3FC 3840703 0.12707  0.0270%s | 84.1870%2 037703 061735 —29.61707]
Augmentations
All 28361078 017937 0005000 | 78.17108  1.037088  4.04483 —23.4710%2
Nolitter - - - 80.887007  0.58T0r  0.10703;  —28.60777;
NofitterNoFlip s s Com 80.5570%  1.511950  7.33%008 —10.607 13
NoFlip 29.3370%0 020104 0.00%02 - - - -

Table 7 Detailed version of CCAE (PCam) and SCLCAE (3dshapes for object hue classification) from Table 1

CCAE (PCam) SCLCAE (3dshapes)
ACC cSM3 MOFM ACC cSM3 MOFM MM3
Rep. Size
2x2x4 63.3943%0 498753 9.28%3,, | 38.077108 263471138 o0 —7.9911 42
2x2x32 7273%;;:; 517%%5 3430;{?;?} 85.251%:% 1298%]}‘2;;;3 36.39%’;2% —57.671?;;
2x2x128 78.667035  0.32+: 0.10*3: 96.54 8.14 22,65t —66.19112
2x2x256 7007708 04303 ggpH® | ggesilB  (HHB g _esqpild
2x2x512 82,3410 0201030 0071021 | 99.4110%0 596t} 13 27784880 _361t170
2x2x1024 83.67104 0 00+0161 0.0070-20 99 75+0:04 476184 32,7014 57.92+229
TX X Model 07 0,61 09 0.00 09 0,00 13 004 10136 V705 /P4 005
arget Model
FC 83.67704  0.0010%0  0.007020 | 38.0771L8 652702 27.65755 —65.77%%19
2FC 89.177935  0.007000  0.007000 85.257311 1.8410-23 103.3073035  —70.49F 41
0.48 0.19 0.44 0.72 0.18 308.48 1.20
iFC - 90.5910¢  0.08T0%  0.00105 | 9654107 091l 2581803 —71.2655%0
ugmentations
Al WOTHE 043 08T | mOTRE 6s27E 2765718 6577
Nolitter - - - 85.251217  0.0070 0.01:007 —37.9210%3
NolitterNoFlip o o o 96.54*072 0.00*000 0.00* (4 ~35.95+0
NoFlip 80.70°035 041702 0.047)% - - - -
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Table 8 Detailed version of CAE and DCAE from Table 2

CAE DCAE
ACC cSM3 MOFM ACC cSM3 MOFM
floor_hue 99.967002  0.017007  0.9570% | 99.977002  0.007000  1.28704
wall_hue 100.007500  0.027003 3203753 | 99.9970() 000700 24.437/38
objecthue  99.23701%  0.387057 22717417 | 99.22702% 0437097 24.557701
scale 7417785041508 0.007000 | 68277508 0.27705,  0.007000
shape 983875 0.07%g  0.00T0n; | 97.45T038  0.0870a0  0.00%)0
orientation  81.6332  0.00°0%5  0.0070% | 74274100 0.0070%  0.00705Y
average 92.22 0.15 9.28 \ 89.86 0.13 8.21
Table 9 Detailed version of CCAE and RCAE from Table 2
CCAE RCAE
ACC cSM3 MOFM ACC cSM3 MOFM MM3
floorhue  99.947003  0.027003  0.007000 | 92.087379 56.6sf?§§ o0 44.67f§:%§
wall_hue 99.98°00)  0.10%0:11  0.001005 | 99.96 00 25.17t;;??; o 7.807022
objecthue  98.96703  1.5570%  0.63%035 | 9879703 59.6575)% o0 40.1170-3%
scale 66.72+330  0.101940  0.0070%0 | 67.101577  2.60*%10 0137331 3178410}
shape 98.75°0%  0.03*01%  0.00+55 98.171333 020705 00670 —248°7%
orientation  72.55731  0.237050  0.0010%0 | 80.6972% 048+ 21 0.00)% 2226107
average 89.48 0.34 011 | 8947 24.13 oo 24.02
Table 10 Detailed version of SCLCAE from Table 2
SCLCAE
ACC cSM3 MOFM MM3
floor_hue 93.531282  28.1811L12  268.2711¢13% —48383;3;
wallhue  99.96700 0297007 046534 —76.40°%)
object-hue  98.677052  2.87t0% 8.69752 73175338
scale 83.941) 1> 243130 0.00* )78 —44.8012%
shape 9506705 1.671723 2,167,015 —67.5473-38
orientation  45.32%31 2501333 6.68437) —9.111%3¢
average 86.08 6.32 47.71 —53.23
Table 11 Mismatches of other models we have tested
Cifar10
ACC cSM3 MOFM MM3
0.69 0.68 6.61
CAE 44.6970¢) 142705 18717501 -
CAENoCrossVal  44.24%030 126100 17.40132 -
CAEI100E 4537010 122703 5.847(7) -
RResNet18 54.64000 398017 48714R 31.82107%
SCLResNet18 87.14103 020502 012007 —-31.831012
RResNet18R32 39.1411% 192t 439103 48.93+117
RResNet18R256  47.4671%¢ 3917530 6.86157 39.087508
RResNetI8RS12  50.55%55)  7.01%18  9.83+1055 36.937352
RResNetI8R756  51.8073%  7.56391  8.50t1100 3561713
RResNet18R1024  52.997)3¢  9.89%371  15.1253412  36.861275

Values are obtained by cross-validation, please refer to Table 4 for more

details.
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Table 12 Mismatches of other models we have tested

PCam Cifar100
ACC cSM3 MOFM MM3 ACC cSM3 MOFM MM3

SCLResNet18 9625703 0377041 08670950  —53261032 | 59.207072 041708 0067003  0.84700%

Values are obtained by cross-validation, please refer to Table 4 for more details.
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Fig. 7 (Left) OFM of a CAE trained for 400 epochs. Stability is measured by 5-fold cross-validation. (Right) OFM of a CAE trained for 400 epochs.
Stability is measured by training the CAE five times on the same dataset split. Unsurprisingly, the stability of the OFM is higher when the CAE is trained
on the same split instead of the different splits from the 5-fold cross-validation.
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Fig. 8 (Left) Losses of a simple CAE measured for every pretext training epoch. The curve formed by the target models represents a typical target training
curve in our setup. (Right) The OFM and its stability measured for every pretext training epoch of the CAE. When we compare the stability to the partially
measured CAE in Figure 7, we observe a similar instability.
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Fig. 9 Additional evidence for the Mismatch and Convergence Section 6.1: Longer training of the pretext task tends to create easier separable represen-
tations which may mismatch with the class label. We observe that the target loss curves converge faster for target models trained on the pretext model’s
representation from later pretext training epochs. Especially the purple curves show this behavior clearly.
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Fig. 10 Version of Figure 4 without convergence criterium. We observe similar behaviors of the mismatches as in Figure 4 in most cases. One exception is
the color jitter, where the OFM starts to converge or decrease late in training. (Top) Impact of different pretext model representation sizes on the OFM for
our model. (Middle) The OFM for the linear and nonlinear target models trained on our pretext model. (Bottom) The OFM for the linear target model and
for the pretext models trained on fewer augmentations. First we removed the color jitter and then the vertical flip from the augmentations. For the CCAE
we only removed the vertical flip. The target models of SCLCAE were trained on 3dshapes, to predict the object hue.
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Fig. 11 Version of Figure 4 for SM3 on accuracies, without convergence criterium. Again, we observe the similar behaviors of the mismatches as in Figure
4 in most cases.
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Fig. 12 (Left) We describe why the OF M for higher representation sizes does not decrease in the setup where we train the contrastive pretext model
(SCLCAE) on 3dshaped and the target model to predict the object hue. Here, the target models trained on the untrained pretext models with larger
representation sizes already achieve high performance due to a higher amount of color-selective, random features. Additionally, learning of the pretext
model does not lead to a high performance gain, which leads again to a small interval for normalization. Therefore, forgetting useful features for the target
task later in training leads to a high mismatch. (Right) We describe why the OF M does not decrease for more complex target models in the same setup. The
nonlinear target model can make better sense of specific random pretext features for classification, which leads to a very low target loss at pretext model
initialization. Since the pretext model does not learn many useful features for the target task later, this leads again to a small interval for normalization.
Therefore, the OF M gets very large later in training, when the pretext model starts to forget useful features for the target task.
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Fig. 13 Version of Figure 4 for M3 on accuracies. We observe that besides early spikes, M3 decreases when we add complexity to the target model.
Additionally, we observe that M3 decreases when we add augmentations in this case. We measure the M3 for RCAE between the classification error of the
target task and the classification error of predicting the rotations of rotated images from PCam (pretext task). For SCLCAE the pretext task metric measures
the ability of the model to correctly detect the representation of each given image in a batch of representations of transformed images. Here we show M3
without a convergence criterium.
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Fig. 14 Version of Figure 5 for SM3 on accuracies.
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Fig. 15 (Left) The OFM of ResNets with different representation sizes trained on the pretext task of predicting rotations on Cifarl0. Target models are
trained for Cifarl0 classification. (Right) MM3 of those ResNets. We vary representation sizes in [32,256,512,756,1024] by adding a 1 x 1 convolution
layer on top of the ResNet18. Thereby the number of filters corresponds to the representation size. In contrast to our observations on our small model the
largest representation we tested leads to a high OFM. A reason for that could be that the larger representation size helps the model to solve the pretext task
and since there is a mismatch with the target task, a better understanding of this task leads to a higher mismatch. We note that a representation size of 1024
is still very small for unsupervised learning. An even larger representation size could therefore still lead to a lower mismatch.
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Fig. 16 MM3 for different pretext tasks trained with a ResNet18 model as backbone. The mismatches are shown for the entire training process. In contrast
to the prediction of rotations (top right), SCLResNet18 has a high negative MM3 for Cifar10. This indicates that learning the contrastive pretext task is
better suited for distinguishing Cifar10 classes then the prediction of rotations. Furthermore, the error of the constrastive pretext task is significant, which
indicates that the model still underfits the pretext task with this setup and there is more room for improvement. For the 100 classes of Cifar100, MM3

becomes slightly positive in the contrastive learning setup. For contrastive learning on the PCam dataset and rotation prediction on Cifar10, we observe an
increasing mismatch during training.



