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In this Supplementary Materials, we present additional details on the Pro-
toMIL model and similarity scores visualizations with more instances and proto-
types for all datasets considered in our experiments.

1 ProtoMIL

1.1 Prototypes projection.

Prototypes projection is an important step in the training procedure because it
visualizes the prototypes using training patches. For this purpose, it replaces every
learned prototype with the nearest training patch from the bag with the same
label as the prototype class. The prototype pc of class c (negative or positive)
can be replaced using the following formula

pc  argmin
z2Z
kz� pck2,

where Z = {z 2 Zx|x 2 X ^ y = c} and y is a label of bag X.

1.2 Pruning.

During the prototype projection, every prototype is replaced with the representa-
tion of the nearest training patch from the bag with the same label. Generally,
the representations of the nearest training patches correspond to the same la-
bel. However, in some cases, the nearest patches of a prototype correspond to
more than one class. It is especially problematic in highly unbalanced datasets,
frequently occurring in MIL tasks. To remove such misleading prototypes, we
extend the prototype pruning algorithm from [1] to work in the MIL scenario.
More precisely, we find k-nearest training patches for each prototype pci belonging

? denotes equal contribution
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Fig. 1: Results for ProtoMIL and baseline MIL approaches on the MNIST Bags
dataset depending on the number of training bags (x axis) using the AUC metric
(y axis). One can observe that ProtoMIL achieves state-of-the-art results with a
larger number of samples.

to class c. If out of those k patches less than r belong to bags labeled with class
c, we assume that this prototype is not determinant and remove it. Moreover,
in contrast to [1], we automatically select r to remove up to l% of prototypes
(l and k are selected so that both classes still contain prototypes, and the drop
in training accuracy is minimal). Finally, we fine-tuned attention and the final
layers to compensate for the prototype removal.

2 Additional results

2.1 MNIST Bags

Experiment details. We experiment with the MNIST dataset, for which we
generate the bags like proposed in [2]. Namely, a single bag contains grayscale
images randomly sampled from the MNIST dataset. The bags’ sizes are chosen
using a normal distribution with a mean of 100 and a standard deviation of
20. A bag is considered positive if it contains at least one image labeled as “9”.
There are equal numbers of positive and negative bags. Notice that even though
such dataset is class-balanced, it contains only 5% of images labeled as “9” (10%
instances in the positive bags). We test ProtoMIL for di↵erent size of dataset
(50, 100, 200, 300, 400, 500 bags). Every experiment is run with random 10-fold
cross-validation and repeated five times with a di↵erent seed to obtain mean AUC
as the evaluation metric. We train a model for 30, 20, and 10 epochs for warmup,
fine-tuning, and end-to-end training, respectively. The number of prototypes per
class is set to 10, with prototype size 64⇥ 2⇥ 2 (determined experimentally).

Results. We compare our model to baseline MIL pooling methods from [2]. As
shown, our ProtoMIL approach requires slightly more samples to achieve AUC
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scores competitive to the regular models (Figure 1). However, as presented in
Figure 3a, it increases model interpretability by finding distinct parts of images
and match them with intuitive positive and negative prototypes (see Figure 2).

Positive Negative

Fig. 2: Sample positive and negative prototypes of ProtoMIL trained on the
MNIST Bags dataset. Notice that the positive prototypes correspond to parts of
“9” while the negative prototypes contain parts of the other digits (like “8” or
“4”). It is expected because a bag is considered positive if it contains at least one
image of “9”.

We experiment on two histological datasets as out toy task: Colon Cancer and
Bisque breast cancer. The former contains 100 H&E images with 22, 444 manually
annotated nuclei of four di↵erent types: epithelial, inflammatory, fibroblast, and
miscellaneous. To create bags of instances, we extract 27⇥ 27 nucleus-centered
patches from each image, and the goal is to detect if the bag contains one or
more epithelial cells, as colon cancer originates from them. On the other hand,
the Bisque dataset consists of 58 H&E breast histology images of size 896⇥ 768,
out of which 32 are benign, and 26 are malignant (contain at least one cancer
cell). Each image is divided into 32 ⇥ 32 patches, resulting in 672 patches per
image. Patches with at least 75% of the white pixels are discarded, resulting in
58 bags of various sizes.

We apply extensive data augmentation for both datasets, including random
rotations, horizontal and vertical flipping, random staining augmentation, staining
normalization, and instance normalization. We use ResNet-18 convolutional parts
with the first layer modified to 3⇥ 3 convolution with stride 1 to match the size
of smaller instances. We set the number of prototypes per class to 10 with a size
of 128⇥ 2⇥ 2. Warmup, fine-tuning, and end-to-end training take 60, 20, and
20 epochs, respectively. 10-fold cross-validation with 1 validation fold and 1 test
fold is repeated 5 times.

Results. Table 1 presents our results compared to both traditional and attention-
based MIL models. On the Bisque dataset, our model significantly outperforms
all baseline models. However, due to the small size of the Colon Cancer dataset,
ProtoMIL overfits, resulting in poorer AUC than attention-based models. Nev-
ertheless, in both cases, ProtoMIL provides finer explanations than all baseline
models (see Figure 3b and Supplementary Materials).

2.2 Messidor dataset

Experiment details. The Messidor dataset contains 1200 retinal images: 654 with
a positive label (diabetic retinopathy) and 546 with a negative one. To create bags
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Fig. 3: Similarity scores between five crucial instances of a bag (columns) and
eight or ten prototypical parts (rows) for a positive and negative bag (left and
right side, respectively) from the MNIST Bags (a) and Colon Cancer datasets
(b). Each prototypical part is represented by a part of image and three nearest
training patches, and each instance is represented by the image and the value
of attention weight ai. Moreover, each cell contains a similarity score and a
heatmap corresponding to prototype activation. One can observe that instances
of a negative bag usually activate negative prototypes (four upper prototypes
in red brackets), while the instances of positive bags mostly activate positive
prototypes (four bottom prototypes in green brackets).

Colon Cancer

Method Accuracy AUC

instance+max* 84.2% ± 2.1% 0.914 ± 0.010

instance+mean* 77.2% ± 1.2% 0.866 ± 0.008

embedding+max* 82.4% ± 1.5% 0.918 ± 0.010

embedding+mean* 86.0% ± 1.4% 0.940 ± 0.010

AbMILP* 88.4% ± 1.4% 0.973 ± 0.007

SA-AbMILP** 90.8% ± 1.3% 0.981 ± 0.007

ProtoMIL (our) 81.3% ± 1.9% 0.932 ± 0.014

Table 1: Results for Colon Cancer dataset. ProtoMIL achieves slightly worse
results for the Colon Cancer dataset, probably due to its small size. Notice
that values for comparison indicated with “*” and “**” comes from [2] and [3],
respectively.
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Method Accuracy F-score

MI-SVM* 54.5% 0.70

mi-SVM* 54.5% 0.71

EMDD* 55.1% 0.69

Citation k-NN* 62.8% 0.69

MILBoost* 64.1% 0.66

mi-Graph* 72.5% 0.75

MIL-GNN-Att* 72.9% 0.75

MIL-GNN-DP* 74.2% 0.77

AbMILP** 74.5% 0.74

SA-AbMILP** 75.2% 0.76

LSA-AbMILP** 76.3% 0.77

ProtoMIL (our) 70.0% 0.75

Table 2: Results for the Messidor dataset show that in terms of F-score, our
ProtoMIL method is comparable with methods based on attention (AbMILP) or
graph convolutions (MIL-GNN-ATT). Notice that values for comparison marked
with “*” and “**” are taken from [4] and [3], respectively.

of instances, we crop overlapping patches of size 224⇥ 224 from each of 700⇥ 700
images, and patches with more than 70% black pixels are dropped as in [4].
Additionally, we apply extensive data augmentation, including random rotations,
horizontal and vertical flipping, Gaussian noise, and patch normalization. We use
ResNet-18 convolutional layers learned from scratch with 10 prototypes per class
and prototype size of 1⇥ 1⇥ 128. Warmup, fine-tuning, and end-to-end training
take 30, 20, and 10 epochs, respectively. We perform 10 fold cross-validation
repeated two times as in [4].

Results. Results of ProtoMIL in the case of F-score are comparable with the
ones achieved in [4] and [3] (see Table 2). However, the accuracy is significantly
lower, most possibly due to the data class imbalance. Nevertheless, our model
provides a fine-grained interpretation of its decision, as presented in Figure 4.

2.3 Additional pruning results

3 Additional visualizations
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Positive bag

Fig. 4: Similarity scores between four crucial instances of a bag (columns) and
four prototypical parts (rows) for a positive bag from the Messidor dataset. One
can observe that ProtoMIL focuses on the disease factors, which are the brightest
yellow spots on the image. Moreover, both positive and negative prototypes are
activated since the retina with pathological changes still shows healthy features,
such as veins. Please refer to Figure 3 for a detailed description of the visualization.

Before pruning After pruning

Dataset Proto. # Accuracy AUC Proto. # Accuracy AUC

MNIST Bags 500 20 ± 0 99.2% ± 0.1% 0.999 ± 0.001 14.12 ± 0.28 99.2% ± 0.1% 0.999 ± 0.001

Messidor 20 ± 0 70.0% ± 0.9% 0.692 ± 0.012 16.70 ± 1.86 64.7% ± 1.3% 0.717 ± 0.013

Table 3: The influence of ProtoMIL pruning on the accuracy and AUC score. One
can notice that even though the pruning removes around 30% of the prototypes,
it usually does not noticeably decrease the AUC and accuracy of the model.
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Fig. 5: Similarity scores for a positive bag from MNIST Bags.
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Fig. 6: Similarity scores for a negative bag from MNIST Bags.
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Fig. 7: Similarity scores for a positive bag from Bisque dataset.
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Fig. 8: Similarity scores for a negative bag from Bisque dataset.
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Fig. 9: ProtoMIL analysis matrix for a positive example from Colon Cancer
dataset.
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Fig. 10: ProtoMIL analysis matrix for a negative example from Colon Cancer
dataset.
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Fig. 11: Similarity scores for a positive bag from Messidor dataset.

Fig. 12: Similarity scores for a positive bag from Camelyon16 dataset.
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Fig. 13: Similarity scores for a negative bag from Camelyon16 dataset.

Fig. 14: Similarity scores for a LUAD bag from TCGA-NSCLC dataset.

Fig. 15: Similarity scores for a LUSC bag from TCGA-NSCLC dataset.
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Fig. 16: Similarity scores for a positive bag from TCGA RCC dataset.

Fig. 17: Similarity scores for a negative bag from TCGA RCC dataset.
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