Supplementary Material

Paper: Cradle-to-gate life cycle assessment of beneficiated phosphate rock production in Tunisia, submitted to Sustainability Management Forum Authors: Roukaya Issaoui, Christine Rösch, Jörg Woidasky, Mario Schmidt, Tobias Viere E-mail: Roukaya.issaoui@kit.partner.edu

1 Detailed description of the phosphate rock mining and beneficiation

1.1 Process "Mining operations phosphate rock."

- Extraction

Two options are available to remove the overburden and the intermediate layers, depending on the layer's geophysical properties. The first option is blast hole drilling using a rotary driller. Then the overburden is stripped by exavator and bulldozera 15 m high bench¹. The second option is blasting the overburden using the ANFO² explosives. Blasting the overburden is only economically feasible when the overburden is very thick, or the intermediate layers' thickness is above 2 m.

- Crushing and screening

The extracted phosphate rock³ is transported to the crushing facility by truck. At first, the rocks are sorted by a static sieve with a 400 mm opening mesh size to remove the oversized rocks (> 400 mm). The oversized rocks are backfilled, and the rest is crushed in a jaw crusher to a size of 0-120 mm and sieved through a vibrating sieve of 60 mm opening mesh. The 0-60 mm size rocks undergo a second crushing, and then they are sieved through a vibrating sieve of 40 mm opening mesh to reach the size of 0-40 mm. The 0-40 mm sorted rocks are transported by a conveyor belt or truck, then stocked next to the washing plant.

¹ A bench may be defined as a ledge that forms a single level of operation above which mineral or waste materials are mined back to a bench face. The mineral or waste is removed in successive layers, each of which is a bench[135]. http://www.mine-engineer.com/mining/open_pit.htm

 $^{^{2}}$ ANFO : Ammonium Nitrate Fuel Oil. It is composed of 94% ammonium nitrate (NH₄NO₃) and 6% fuel oil. These explosives belong to the family of nitrated explosives

³ It refers to the layers of phosphate rock before to undergoes any mechanical transformation to remove the non-phosphate rock

1.2 Process "Wet beneficiation phosphate rock."

Scrubbing, screening, and classification

The crude phosphate rock (24% P_2O_5) is mixed with water in the rotating scrubber in 2:1 ratio. Then it undergoes attrition and disintegration to transform into a pulp which is poured on a vibrating screen of 2 mm mesh with jets of pressurized water. The pulp containing materials < 2 mm, is pumped into hydro-cyclones to separate the particles at 71 μ m. The hydro-cyclone separates 71 μ m – 2 mm underflow fraction. The overflow fraction (size <71 μ m) is treated in a decantation tank in the wastewater treatment plant for dewatering.

- Filtration

The 71 μ m - 2 mm-sized phosphate fraction is conveyed on a filtering belt to reduce the product's water content to 15%. The product coming out on the filter belt is the beneficiated phosphate rock, which is the final marketable product to be sent to the chemical plant or the drying unit. The beneficiated phosphate rock is concentrated at 29% P₂O₅.

2 Life Cycle Inventory

2.1 Input table of the unit process 'mining operations' and 'wet beneficiation"

Table 1: Inputs of the production 1 kg P ₂ O ₅ of open-pit mining and wet beneficiation	i in
Tunisia	

Input	Unit	Total	Mining	Beneficiation
Infrastructure				
Occupation mineral extraction site (industrial area)	m²*a	1.02E-03	1.02E-03	
Transformation, to mineral extraction site (from desert)	m²	1.70E-01	1.70E-01	
Occupation, construction building , (5year)	m²	4.61E-05	4.61E-05	
Occupation for office and maintenance lifetime 20 years	m²	1.15E-05	1.15E-05	
Buildings crushing, steel	m²	1.70E-05	1.70E-05	
Building beneficiation plant	m²	9.43E-06		9.43E-06
Occupation, construction site	m²*a	2.12E-06		2.12E-06
Occupation, industrial site	m²*a	5.30E-07		5.30E-07
Water recycling Plant	item	9.97E-10		9.97E-10
Conveyor belt (9km, 25 lifetime; 1000t/h, 3500h/year)	m	5.37E-06	4.29E-07	4.94E-06
Machine				
Blasthole Drills	kg	5.89E-06	5.89E-06	
Hydraulic excavator	ltem	4.42E-10	4.42E-10	
Bulldozer	kg	3.89E-05	3.89E-05	

Dumper	kg	1.50E-04	1.50E-04	
Truck	Item	4.42E-10	4.42E-10	
Filtering belt	m	1.13E-05		1.13E-05
Equipment; scrubber, hydrocylone, screening	kg	1.15E-04		1.15E-04
Maintenance for Machinery	ltem	2.80E-09	2.80E-09	
Movement of soil				
Phosphorus, as P (18% in Apatite, 11% in crude ore, in ground)	kg P	4.58E-01	4.58E-01	
Fluorine,4.5% in Apatite, 2,4% in crude ore, in ground	kg F	1.00E-01	1.00E-01	
Operating Resources				
Explosive ANFO	kg	9.04E-03	9.04E-03	
Explosive N30	kg	1.65E-04	1.65E-04	
Total explosive	kg	9.20E-03	9.20E-03	
Diesel (used in machinery, 45.6 MJ per kg diesel)	MJ	7.37E-01	7.25E-01	1.26E-02
Electricity (Industrial , Medium voltage)	KWh	4.00E-02	6.89E-04	3.93E-02
Total energy	MJ	8.81E-01	7.27E-01	1.54E-01
Lubricant oil	kg	7.79E-04	7.17E-04	6.22E-05
Industrial Water	m³	1.17E-02		1.17E-02
Flocculant: Semifloc	kg	2.52E-04		2.52E-04
Transport				
Transport of Barren rock (with dumper)	kg-km	3.53E+00	3.53E+00	
Transport of crude phosphate (with truck)	kg-km	1.50E+02	1.50E+02	
Transport equipment, road	kg-km	2.13E-01	2.13E-01	
Transport equipment, freight ship	kg-km	2.13E+00	2.13E+00	
Transport Explosives, road	kg-km	5.52E-01	5.52E-01	
Transport of beneficiated rock, road	kg-km	5.99E+00		5.99E+00
Transport of waste, road	kg-km	1.17E+01		1.17E+01
	i.			

2.2 Output of the unit process 'Blasting' of Phosphate rock in Tunisia

Output	Unit	Per kg crude PR	Per kg P2O5		
Carbon Monoxide CO	kg	1.07E-02	4.46E-02		
Nitrogen Oxides NO _x	kg	5.73E-02	2.39E-01		
Total Suspended Particles TSP	kg	2.55E-04	1.06E-03		
PM < 10μm	kg	1.34E-04	5.58E-04		
PM < 2.5 μm	kg	1.32E-04	5.49E-04		
²³⁸ U	kbq	1.02E-04	4.26E-04		
²³² Th	kbq	7.67E-06	3.19E-05		
²²⁶ Ra	kbq	8.29E-05	3.45E-04		
⁴⁰ K	kbq	3.95E-09	1.65E-08		
Cd	kg	9.39E-09	3.91E-08		

Table 2: Outputs of the process "Blasting phosphate-TN."

2.3 Output table of the unit process 'mining operations' and 'wet beneficiation'

Table 3: LCI output data for the production of 1 kg P_2O_5 from open-pit mining and wet beneficiation in Gafsa-Tunisia

Output	Unit	Total	Mining	Beneficiation
Emission to air			Ū	
Carbon monoxide	kg/kg	4.46E-02	4.46E-02	
Nitrogen monoxide	kg/kg	2.39E-01	2.39E-01	
Cadmium	kg/kg	1.37E-06	1.37E-06	
Particulate Matter				
Particulates, <10 um	kg/kg	2.16E-03	2.12E-03	
Particulates, > 2.5 um, and < 10um	kg/kg	1.13E-02	1.07E-02	
Particulates, < 2.5 um	kg/kg	2.79E-03	1.08E-03	
Radioactive				
Uranium-238	kBq/kg	1.49E-02	1.49E-02	
Thorium-232	kBq/kg	1.12E-03	1.12E-03	
Radium-226	kBq/kg	1.21E-02	1.21E-02	
K-40	kBq/kg	2.28E-03	2.28E-03	
Emission to water				
Fluorine	mg/kg	3.09E+02		3.09E+02
Sulfate	mg/kg	1.69E+04		1.69E+04
Phosphate PO4	mg/kg	1.63E+02		1.63E+02
Nitrate NO3	mg/kg	1.16E+02		1.16E+02
Nitrite NO2	mg/kg	1.00E+02		1.00E+02
Cd	mg/kg	6.56E-02		6.56E-02
Pb	mg/kg	6.56E-03		6.56E-03
Zn	mg/kg	3.48E-01		3.48E-01
Emission to soil				
Cd	mg/kg	2.46E+01		2.46E+01
lead	mg/kg	4.15E+00		4.15E+00
U	mg/kg	2.86E+01		2.86E+01
Zn	mg/kg	2.58E+02		2.58E+02
U 234	kBq/kg	4.29E+01		4.29E+01
U238	kBq/kg	1.43E+01		1.43E+01

2.4 Particulate matter emission of the unit process 'mining operations'

Table 4: Particulate matter emission factor g/metric ton of crude phosphate rock according to the EEA calculation model (European Environmental Agency 2019b, 2019a), the composition of Total Suspended Particles (TSP) (%), and Gafsa mining weather conditions

Process step	Emission Factor g/metric ton			Data source	
·····	TSP%	PM-10%	PM-2.5%		
	100%	53%	52%	CPG Internal data(Direction of the	
Blasting/drilling	15	8.1	8.0	sector Metlaoui-Kef Schfaier 2017a, 2017b) (Direction of Accounting 2017, 2018)/ US EPA,1998 (U.S. Environmental Protection Agency 1998)	
	100%	35%	5%	CPG Internal data	
Material processing: Dry crushing and grinding without filtering	2.1	0.77	0.09	(Direction of the sector Metlaoui-Kef Schfaier 2017a, 2017b) (Direction of Accounting 2017, 2018)/ US EPA,1998 (U.S Environmental Protection Agency 1998)	
Transportation between sites:	100%	29%	3%	EPA unpaved road (U.S.	
transport of crude PR and transport of overburden	6,575	1,889	191	Environmental Protection Agency)	
	100%	47%	7%	CPG Internal data	
	0.71	0.33	0.051	(Direction of Accounting 2017; Direction of the	
Material handling: trucks and				sector Metlaoui-Kef	
Dumper loading and unloading				Schfaier 2017b)/	
				USEPA,1998 (U.S.	
				Environmental	
				Protection Agency)	
Total Emission factor	100	29%	3%		
excluding the blasting/drilling	6,578	1,890	191		