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1 Introduction 

The text in this electronic supplementary material is a collection of derivations, explanations and 

analyses that support the main paper. The information on the nature of fractal lines, together with 

their generation and evaluation (sections 2 to 5), is intended for the reader interested in 

understanding the methods. The flaw in using the divider method on self-affine fractals is 

demonstrated using an empirical example in section 6, a common erroneous implementation of the 

Box Count method is shown in section 7 and the problem with correlation of JRC to the Z2 method is 

shown by an example in section 8. In section 9, a study on the number of realisations needed to get 

stable mean and variance of evaluated parameters is carried out, followed by a study in section 10 on 

how the evaluated fractal parameters are affected by the fractal dimension, length/resolution and 

asperity scaling on a set of synthetic traces in sec 10. The study in section 10 is the basis of inferring 

H and σδh(ΔL) from real traces with as low uncertainty as possible. Finally, section 11 presents a 

short description of the procedures used when manually digitising traces. 

  



5 
 

2 Basics of fractals 

Fractals can be either self-similar or self-affine. Fractals that are self-similar retain their properties 

and visual appearance through different levels of magnification, see Figure 2-1 left. A natural 

example of a self-similar fractal line may be the coastline of an island, where the coordinates are 

coupled to each other and need to have the same quantity along the two axes to make sense. Self-

affine fractals, however, have decoupled measures on the two axes and hence need to be scaled 

differently in different directions to appear similar, see Figure 2-1 right. An obvious example of a 

self-affine fractal might be the data traffic as a function of time in a telecom network. It is not 

possible to define a square or an angle in time-bit, space since there is no geometric relationship 

between bits and seconds.  

 

It may be easy to erroneously think, as an analogue to the fractal coastline above, that a height 

profile across the island would conform to a self-similar trace, since both the abscissa and ordinate 

may be expressed in the same units. However, this is not the case since the two axes may have 

different units on the axes, still resulting in the same fractal dimension. The intersecting line between 

a fractal surface and a plane will actually be self-similar if, and only if, the plane is parallel to the 

average of the fractal surface (Russ 1994). Hence, fractures should conform to self-affine fractals 

(Mandelbrot 1985; Den Outer et al. 1995; Russ 1994). Later research has shown that fractures can be 

described as mono-fractal self-affine surfaces over several orders of magnitude (e.g. Renard et al. 

2006; Candela et al. 2009; Brodsky et al. 2011; Candela et al. 2012). 
 

  
Figure 2-1. Difference between a self-similar fractal, to the left, and a self-affine fractal, to the right. 

 

A self-similar fractal is constrained solely by its fractal dimension, D. A self-affine fractal, on the 

other hand, needs a scaling measure of the ordinate values in addition to the fractal dimension to be 

fully constrained. The dimension of a self-affine fractal steers the persistence of correlation between 

vertices at different distances, whilst the scaling measure steers the magnitude of the differences 

between vertices. 

2.1 Fractal dimension 

There is a neat relationship between an isotropic fractal surface and the trace of a transect crossing 

the surface: 

 

1Line SurfaceD D   eq. 2-1 

 

where: 

DLine = the fractal dimension of the transect 

DSurface = the fractal dimension of the fractal surface. 

 

The fractal dimension of a self-affine fracture trace can span between the topological and Euclidian 

dimension. A fracture trace is topologically a line, a 1D object, defined in a Euclidean 2D space. 

Hence, the dimension of a fractal line is a real number between 1 and 2. Another measure to define 
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the fractal dimension is the Hurst exponent. The relationship between different fractal dimensions, 

Dx, and the Hurst exponent, H, is described by e.g. Russ (1994) as: 

 

2

3

4
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Surface

Volume

H D

H D

H D

 

 

 

 eq. 2-2 

 

where: 

H = the Hurst exponent 

DLine = the fractal dimension of a fractal line 1 < DLine < 2 

DSurface = the fractal dimension of a fractal surface 2 < DSurface < 3 

DVolume = the fractal dimension of a fractal volume 3 < DVolume < 4. 
 

This implies that H is restricted to be a real number between 0 and 1 to have a physical meaning. In 

theory, the Hurst exponent can be larger than 1, resulting in a line that is less than 1D, a Cantor dust, 

i.e. a line with voids. Theoretically, H can also be less than 0, resulting in a line that wiggles so much 

that it fills more than the 2D space. However, these fractal “lines” are of limited interest for fracture 

traces and are not discussed further. 

 

Depending on the value of H, fracture traces can be divided into three groups. H > 0.5 reflects traces 

with long-range correlation; H < 0.5 traces with anti-correlation; and H = 0.5 traces following a 

random walk, i.e. the probability that the trace will continue or end the current trend is equal.  

 

There are several methods to evaluate the Hurst exponent of a mono-fractal self-affine fracture trace. 

These include analysing the slope of power spectrum using Fast Fourier Transform, FFT (Russ 

1994); the standard deviation of the correlation function, RMS-COR (Candela et al. 2009); the 

Korcak Plot of Zero Sets (Russ 1994); the Box Count approach (Malinverno 1990); and many more 

not covered in this work. 

 

By evaluating a trace, the fractal dimension of the surface in the direction of the trace can be 

inferred. This means that traces in different directions are needed to characterise the fractal 

dimension in the different directions. This is particularly necessary when fractures have been sheared 

and, hence, are supposed to have different fractal dimension in different directions. 

2.2 Magnitude measure 

The magnitude parameter can be described in different ways. For example Brown (1987), 

Malinverno (1990) and Johansson and Stille (2014) use the constant κ
0.5

 in eq. 2-3, whilst Renard et 

al. (2006), Candela et al. (2009) and Stigsson (2015) use σδh(Δx), i.e. the standard deviation of the 

height differences Δx apart: 

 

  Hxxh    eq. 2-3 

 

where: 

σδh(Δx) = standard deviation of height differences between locations Δx apart 

κ = variance of height difference of points one unit apart 

H = Hurst exponent. 

 

The magnitude measure of a mono-fractal self-affine fracture trace can be evaluated using e.g. the 

intercept of power spectrum (Russ 1994) or RMS-COR (Candela et al. 2009). 

2.3 Effect of scaling  

Fracture traces are supposed to be self-affine, and hence scale differently in the length and height 

direction. This implies that a longer trace will appear smoother when downscaled, whilst shorter 

traces will appear rougher when upscaled. Figure 2-2 presents an example of a 1 m long trace with 



7 
 

H = 0.8 and σδh(0.1 mm) = 0.025 mm linearly downscaled to 1 dm. In the same diagram a 1 cm 

piece of the 1 m trace is linearly upscaled to 1 dm. Despite the 1 cm trace being a part of the 1 m 

trace it appears to be much rougher than the long trace due to linear scaling. 

 

 

 
Figure 2-2. Two traces with the same fractal parameters, H=0.8 and σδh(0.1 mm)=0.025 mm. Due 

to the different scaling, the blue downscaled trace appears to be smoother than the red upscaled 

trace.   
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3 Fast Fourier Transform 

According to the Fourier theorem (Fourier 1822), any complex motion can be broken down to a 

superimposed series of sine waves. Hence, any fractal line can be accurately reproduced by a series 

of sine waves. Fast Fourier Transform makes use of Fourier’s theorem, but uses a fast algorithm 

attributed to Cooley and Tukey (1965). Their method is very similar to an unpublished method 

developed by Gauss, presumably in 1805, but published posthumously in Gauss (1866), see e.g. 

Goldstine (1977). The method is well described in e.g. Smith (1997). 

 

Fast Fourier Transform, FFT, can only handle data that conform to 2
n
 entries. In its original 

implementation, the method transformed data between the time domain and the frequency domain. 

However, it can be applied to transformation between the spatial domain and the length frequency 

domain, i.e. between height values of a fracture trace and the power spectrum of the length 

frequencies. The workflow to transform data between the spatial and frequency domain is shown in 

Figure 3-1.  

 

 
 

Figure 3-1. The workflow for generating and evaluating fractal lines using Fast Fourier Transform 

(FFT). 

3.1 Theory of FFT 

The FFT algorithm mainly consists of two parts; rearranging data according to bit reversal sorting, 

followed by butterfly calculations for each stage.  

3.1.1 Bit reversal sorting 

Bit reversal sorting or ordering is nothing more than arranging the entries according to the mirrored 

bit value, see Figure 3-2a. 

 

An algorithm to construct the index order after bit reversal is shown in Figure 3-2b. For each stage, s, 

the algorithm multiplies the values in the former bit-reversed vector by two, and then appends the 

new bit-reversed vector with a copy of the first 2
s
/2 entries added one to each value. The procedure 

continues until the bit-reversed vector contains the desired number of entries. When the index order 
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vector is constructed, the entries in the real and imaginary vectors, Figure 3-1, are sorted 

accordingly.  

 
a) 

 

b) 

 
Figure 3-2. a) Example of bit reversal of eight digits. b) An algorithm to perform bit reversal. 

3.1.2 Butterfly calculations 

In butterfly calculation, two complex numbers are cross-added using multiplication of a twiddle 

factor. The method is called “butterfly” since the paths for the calculations resemble a butterfly, 

Figure 3-3. The output is two new complex numbers: 

 

j

k

nij

j

k

nii

aWab

aWab




 eq. 3-1 

 

where: 

ax = the input complex number 

bx = the output complex number 

Wn
k
 = the twiddle factor, eq. 3-2. 

 

 
Figure 3-3. A single butterfly calculation visualised. 

 

The complex value of the twiddle factor, Wn
k
, depends on the number of entries in the current 

butterfly group, n, and the order, k, of the calculation in each butterfly group. The twiddle factor is 

calculated according to: 

 

i
n

k

n

k
W k

n 
















  2sin2cos  

 

eq. 3-2 

 

where: 

Wn
k
 = the twiddle factor 

n = the number of entries in the current butterfly group 

k = the order of the calculation in the current butterfly group. 

 

The twiddle factor is hence a unit vector in the complex number space that repeats the result 

periodically. A visualisation of the three first stages of eq. 3-2 is provided in Figure 3-4. 
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Figure 3-4. Visualisation of calculation of the twiddle factors used in Figure 3-5.     

 

Recalling the rules of multiplying complex numbers, the calculation of the twiddle factor, Wn
k
, times 

aj is: 

 

          iaaiWWaW jj

k

n

k

nj

k

n ImReImRe  

                iaWaWaWaW j

k

nj

k

nj

k

nj

k

n ReImImReImImReRe   

 

eq. 3-3 

 

The butterfly calculations are carried out for each stage where the distance between the i and j 

indices increases by a factor of two for each stage. Figure 3-5 shows all butterfly calculations for the 

three stages of an array of eight complex numbers. 

 

 
Figure 3-5. Visualisation of all butterfly calculations for an array of eight complex numbers. 

3.2 Theory of Inverse FFT, IFT 

There are different ways of doing Inverse FFT (IFT) using forward FFT, see e.g. Lyons (2015). One 

of the methods makes use of complex conjugation, i.e. multiplying the imaginary values by –1. The 

method starts with a complex conjugation, followed by forward FFT, another complex conjugation 

and a final division by the number of entries. However, for the generation of fractal lines the 

imaginary part of the spatial domain will be zero, and hence the second complex conjugation can be 

omitted for efficiency purposes. The workflow is visualised in Figure 3-6. 
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Figure 3-6. The workflow for Inverse Fast Fourier Transform (IFT) by use of forward FFT. 

3.3 Codes 

    '=========================================================================== 

    '===                                 FFT                                 === 

    '=========================================================================== 

    '===  Routine that Calculate the FFT of an array of complex numbers      === 

    '===                                                                     === 

    '===  References:                                                        === 

    '===  THE FAST FOURIER TRANSFORM                                         === 

    '===  The Scientist and Engineer's Guide to Digital Signal Processing    === 

    '===  By Steven W Smith                                                  === 

    '===  ISBN: 978-0966017632                                               === 

    '===  copyright © 1997-1999 by California Technical Publishing,          === 

    '===  San Diego California                                               === 

    '===  www.dspguide.com                                                   === 

    '===                                                                     === 

    '===  https://en.wikipedia.org/wiki/Bit-reversal_permutation             === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  Re(0 to N-1) = the y data vector in arithmetic space               === 

    '===  Im(0 to N-1) = the imaginary part of space vector, i.e. all 0      === 

    '===  nofData      = the number of data in each data vector              === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  Re(0 to N-1) = the real part of the frequency domain vector        === 

    '===  Im(0 to N-1) = the imaginary part of the frequency domain vector   === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson 10 March 2017                           === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub FFT(ByRef Re() As Double, _ 

            ByRef Im() As Double, _ 

            ByRef nofData As Integer) 
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        Dim pi As Double          'Pi, 3.14159265... You know 

        Dim i, j As Integer       'Counters/indices 

        Dim currBgrp As Integer   'Counter keeping current butterfly group 

        Dim locNdx As Integer     'Counter keeping local index in each butterfly  

        '                          group 

        Dim nofStages As Integer  'Number of stages in the FFT to be calculated 

        Dim currStage As Integer  'The current stage number  

        Dim nofBgroups As Integer 'number of Butterfly groups in current stage 

        Dim ndxDiff As Integer    'The difference between the indices in the  

        '                          current butterfly calculation 

        Dim nofEntries As Integer 'Number of entries in the butterfly arrays of 

        '                          the current stage  

        Dim ReW As Double         'Real part of Twiddle factor 

        Dim ImW As Double         'Imaginary part ofTwiddle factor 

        Dim ReWaj As Double       'Real part of the multiplication of Twiddle  

        '                          factor and aj, eq 3-2 

        Dim ImWaj As Double       'Imaginary  part of the multiplication of  

        '                          Twiddle factor And aj, eq 3-2 

        Dim dReW As Double        'Real part of the rotation increment of the  

        '                          twiddle factor 

        Dim dImW As Double        'Imaginary part of the rotation increment of  

        '                          the twiddle factor 

        Dim tmpRe As Double       'Temporary keep real part of a complex number 

        Dim tmpIm As Double       'Temporary keep imaginary part of a complex  

        '                          number 

 

        Dim bitRevOrder(nofData - 1) As Integer 'The order to sort the data  

        '                                        before performing the butterfly 

 

 

        '***  INITIATE PARAMETERS  *** 

        'Define the constant pi 

        pi = 4 * Atan(1) 

 

        'Calculate of Stages 

        nofStages = CInt(Log(nofData) / Log(2)) 

 

 

        '***  CONSTRUCT THE BIT REVERSED ORDER ARRAY  *** 

        'Loop throgh all levels 

        For i = 0 To nofStages - 1 

 

            'Multiply the former vector position with 2 and append it added 1,  

            'Figure 3-2 b 

            For j = 0 To CInt(2 ^ i) - 1 

                bitRevOrder(j) = bitRevOrder(j) * 2 

                bitRevOrder(j + 2 ^ i) = bitRevOrder(j) + 1 

            Next 

        Next 

 

 

        '***  SORT THE DATA ACCORDING TO THE BIT REVERSED ORDER  *** 

        'Go throug the bit reversed index vector and swap entries accordingly 

        For i = 0 To nofData - 1 

            'Only do the first swap, other wise the vector will look the same as 

            'the input on return due to swap forth and back 

            If i < bitRevOrder(i) Then 

 

                'Temporary save real and imaginary values 

                tmpRe = Re(bitRevOrder(i)) 

                tmpIm = Im(bitRevOrder(i)) 

 

                'Move values to corrrect index 

                Re(bitRevOrder(i)) = Re(i) 

                Im(bitRevOrder(i)) = Im(i) 

 

                'Finalise the swap by coping the temporary saved data to correct 

                'index() 

                Re(i) = tmpRe 

                Im(i) = tmpIm 

            End If 

        Next 
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        '***   GO THROUGH ALL STAGES AND DO THE BUTTERFLY CALCULATIONS   *** 

        'visualised in Figure 3-4 

        'Loop for each stage 

        For currStage = 1 To nofStages 

 

            'Calculate number of butterfly groups 

            nofBgroups = CInt(2 ^ (nofStages - currStage)) 

 

            'Calculate the difference between the indices in the current  

            'butterfly calculation 

            ndxDiff = CInt(2 ^ (currStage - 1)) 

 

            'Calculate the number of entries in the current butterfly 

            nofEntries = ndxDiff * 2 

 

            'Calculate Twiddle angle increment. Negative angles due to clockwise 

            'rotation, (eq 3-3) 

            dReW = Cos(-2 * pi / nofEntries) 

            dImW = Sin(-2 * pi / nofEntries) 

 

            'For each butterfly group 

            For currBgrp = 0 To nofBgroups - 1 

 

                'Initiate the real part, ReW, and imaginary part, ImW of the  

                'twiddle(factor, W) 

                ReW = 1 

                ImW = 0 

 

                'Do the calculation for each butterfly in the current sub array 

                For locNdx = 0 To ndxDiff - 1 

 

                    'Calculate the indices to use in the butterfly 

                    i = locNdx + currBgrp * nofEntries 

                    j = i + ndxDiff 

 

                    'Calculation of the twiddle factor times the aj (eq 3-2) 

                    ReWaj = ReW * Re(j) - ImW * Im(j) 

                    ImWaj = ReW * Im(j) + ImW * Re(j) 

 

                    'Do the butterfly, (eq 3-1) 

                    Re(j) = Re(i) - ReWaj 

                    Im(j) = Im(i) - ImWaj 

                    Re(i) = Re(i) + ReWaj 

                    Im(i) = Im(i) + ImWaj 

 

                    'Update twiddle factors by rotating one step, by simple  

                    'rotation of vectors, i.e. 

                    ' x' = x·cos(a) - y·sin(a) 

                    ' y' = x·sin(a) + y·cos(a) 

                    tmpRe = ReW 

                    ReW = tmpRe * dReW - ImW * dImW 

                    ImW = tmpRe * dImW + ImW * dReW 

 

                Next locNdx 

 

            Next currBgrp 

 

        Next currStage 

 

    End Sub 
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    '=========================================================================== 

    '===                                invFFT                               === 

    '=========================================================================== 

    '===  Routine that Calculate the inverse FFT of an array of complex      === 

    '===  numbers using complex conjugation and forward Fast Fourier         === 

    '===  Transform                                                          === 

    '===                                                                     === 

    '===  References:                                                        === 

    '===  THE FAST FOURIER TRANSFORM                                         === 

    '===  The Scientist and Engineer's Guide to Digital Signal Processing    === 

    '===  By Steven W Smith                                                  === 

    '===  ISBN: 978-0966017632                                               === 

    '===  copyright © 1997-1999 by California Technical Publishing,          === 

    '===  San Diego California                                               === 

    '===  www.dspguide.com                                                   === 

    '===  section 12.3 and Table 12-5                                        === 

    '===                                                                     === 

    '===  https://www.dsprelated.com/showarticle/800.php                     === 

    '===  see also Method 4, complex conjugate                               === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  Re(0 to N-1) = the real part of the frequency array                === 

    '===  Im(0 to N-1) = the imaginary part of the frequency array           === 

    '===  nofData      = the number of data in each array                    === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  Re(0 to N-1) = the height values of the trace                      === 

    '===  Im(0 to N-1) = the imaginary array, should be all zeros on return  === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson 14 March 2017                           === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub invFFT(ByRef Re() As Double, _ 

               ByRef Im() As Double, _ 

               ByRef nofData As Integer) 

 

        Dim i As Integer 

 

        '***  COMPLEX CONJUGATION  *** 

        'Step 1 in Figure 3-6 

        'Change the sign of Im, i.e. make the conjugate of the complex number 

        For i = 0 To nofData - 1 

            Im(i) = -Im(i) 

        Next i 

 

        '***  FAST FOURIER TRANSFORM  *** 

        'Step 2 in Figure 3-6 

        'run forward FFT 

        Call FFT(Re, Im, nofData) 

 

        '*** DIVIDING BY N *** 

        'Step 3 in Figure 3-6 

        'Divide the real part by the number of entries and the Re array will  

        'contain the trace 

        'The complex conjugation of the complex number is not necessary since  

        'the imaginary part should be zero. 

        For i = 0 To nofData - 1 

            Re(i) = Re(i) / nofData 

        Next i 

 

    End Sub  
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4 Generating fractal lines 

Russ (1994) carried out a comprehensive study of different methods to generate fractal lines and 

different methods to evaluate the fractal properties. Russ used four methods to generate different 

fractal lines of 1024 points: 1) Iterative Midpoint Displacement, 2) Fractal Brownian Motion, 3) 

Mandelbrot-Weierstrass Function and 4) Inverse Fast Fourier Transform, IFT, of Power Spectrum. In 

this material only IFT of Power Spectrum is explained, since it seems to generate reasonable results 

over the physical interesting span of the Hurst exponent, i.e. 0<H<1. 

 

The method uses a power spectrum of frequencies together with a random phase shift as input. These 

imaginary values are run through an IFT and the output is a fractal line. The fractal line is, hence, 

created of superimposed sine waves with random starting points. The method is visually explained in 

Figure 3-1 and the underlying equations are explained below.  

4.1 Frequency Domain, Amplitude 

For a fractal line, the power is proportional to the inverse of the frequency raised to β, i.e.: 

 

  1p f f   eq. 4-1 

 

where:  

p(f) = power of the wave with frequency f  

f = frequency of the wave 

β = slope of the power spectrum.  

 

The power of the wave in the frequency domain has a direct relationship to the amplitude of the 

wave in the spatial domain according to: 

 

   
2

2

N
p f a f

 
  
 

 eq. 4-2 

 

where:  

p(f) = power of the wave with frequency f  

a(f) = amplitude of the wave with frequency f 

N = number of sampling points.  

 

The relationship between β and the Hurst exponent, H, is: 

 

2 1H    eq. 4-3 

 

Combining equations eq. 4-1 to eq. 4-3 results in:  

 

 
 1 2

2
H

f
a f

N

 


  eq. 4-4 

 

The proportionality constant in eq. 4-4 is the square root of the intercept of the regression of the 

power spectrum. Hence, the amplitude a(f) is a function of the Hurst exponent, H, and frequency, f, 

expressed as: 

 

   1 22 H

Ia f c f
N

 
    eq. 4-5 
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where:  

a(f) = amplitude of the wave with frequency f  

cI = intercept of the regression of the power spectrum 

f = frequency  

H = the Hurst exponent.  

 

The constant, cI, in eq. 4-5 steers the amplitude measure σδh(1p), i.e. the standard deviation of the 

height differences of adjacent vertices of the trace. The standard deviation of height differences 

between adjacent vertices of one full single discretised sine wave can be expressed as: 

 

 NfAp   sin21  eq. 4-6 

 

where:  

σ1p = standard deviation of height differences of adjacent vertices over one full wave 

A = amplitude  

f = frequency 

N = number of data points along one wave.  

 

The derivation of eq. 4-6 is shown in appendix A. The value is not exact, since there is a negligible 

dependence of the result on the phase offset. The error is largest when a sine wave has a phase offset 

that is exactly in the middle of two adjacent vertices. 

 

The standard deviation of the height differences of adjacent vertices for any of the frequencies in the 

power spectrum can hence be calculated by combining eq. 4-5 and eq. 4-6: 

 

     1 2

1

2 2
sin

H

p f c f f N
N

 
 

      eq. 4-7 

 

The standard deviation of a series of independent distributions is calculated according to: 

 

2

1

I

Total i

i

 


   eq. 4-8 

 

where:  

σTotal = standard deviation of all I independent distributions combined 

σi = standard deviation of distribution i 

I = number of independent distributions  

i = distribution number. 

 

Hence, the amplitude measure σδh(1p) for a series of sine waves is calculated according to: 

 

      
2 1 2

1 2

1

2 2
1 sin

N
H

I

k

h p c k k N
N

 


 



      eq. 4-9 

   

where:  

σδh(1p) = standard deviation of height differences of adjacent vertices of the fractal line 

cI = intercept of the regression of the power spectrum 

k = frequency, i.e.  number of waves per trace length  

N = number of vertices of the fractal line  

H = the Hurst exponent.  

 

Solving eq. 4-9 for c and inserting the results into eq. 4-5 yields:  
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 eq. 4-10 

 

where:  

a(f) = amplitude of wave with frequency f  

f = frequency 

N = number of vertices to be generated 

σδh(1p) = desired standard deviation of height differences of adjacent vertices 

k = counter and frequency in summation 

H = Hurst exponent. 

 

The summation is only done over the frequencies 1 to N/2 – 1, since the wave numbers above the 

Nyquist frequency cannot be solved by the resolution at hand and will hence only add noise. 

 

The amplitude vector is constructed in the following way. The first value in the amplitude vector and 

the value at index N/2 are assigned zeros, since these values only reflect the average vertical offset of 

the trace. The amplitude values at index 1 to N/2 – 1 follow eq. 4-10. The remaining amplitudes are 

mirrored around index N/2 according to: 

 

2 2 1 2 1i N N ia a i N      eq. 4-11 

 

4.2 Frequency Domain, Phase shift 

The phase shift vector is needed to randomly spread the start point of the different sine waves. The 

phase shift vector is constructed in the following way. First, the phase shift vector is assigned a zero 

at index zero and index N/2. This is because the summation of these positions only reflects the 

average vertical offset of the trace. Thereafter, the N/2-1 positions in between are filled with random 

numbers following a uniform distribution between 0 and 2π. The remaining N/2-1 positions are 

assigned mirrored phase shift numbers multiplied by –1, i.e.: 

 

12122   NiiNNi   eq. 4-12 

 

The mirroring of both the phase shift and amplitude equals a complex conjugate of the mirrored 

complex numbers. 

4.3 Frequency Domain, Imaginary part 

The imaginary part of the complex frequency is simply calculated as the amplitude, ak, multiplied by 

the sine of the phase shift ϕk for all N entries, i.e.: 

 

  10sinIm  Nka kk   eq. 4-13 

 

4.4 Frequency Domain, Real part 

In the same way as the imaginary part is calculated, the real part of the complex frequency is 

calculated as the amplitude, ak, multiplied by the cosine of the phase shift ϕk for all N entries, i.e.: 

 

  10cosRe  Nka kk   eq. 4-14 
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4.5 Spatial Domain 

The complex numbers constructed by the vectors in eq. 4-13 and eq. 4-14 are run through the IFT 

explained in section 3.2. The result is a vector of real numbers describing the random fractal line. 

4.6 Worked example 

The generation of a fractal line using Inverse Fast Fourier Transform of Power Spectrum has the 

following steps  

 

1. Choose desired H, σδh(1p) and number of vertices. 

2. Construct the square root of power spectrum array. 

3. Construct the random phase shifts array. 

4. Calculate the imaginary numbers using the arrays. 

5. Do a complex conjugation of the imaginary number array. 

6. Sort the imaginary number array according to bit reversed order. 

7. Do the butterfly calculations. 

8. Divide the results by the number of vertices of the trace. 

 

The example chosen here is to construct a fractal line with H = 0.600, σδh(1p) = 0.2 and 16 vertices. 

From these data, the parts of the summation in the denominator of eq. 4-10 are shown in Table 4-1. 

The summation is used in eq. 4-10 to calculate the amplitude array a(f). The phase shift array is 

constructed using a uniform distribution of values between 0 and 2π. 

 
Table 4-1. Calculation of the seven unique values of the input arrays 

k 
   1 2

sin
H

k k N
 

    f a(f) Phase shift 

1 0.195  1 2.735 1.045 
2 0.179  2 1.276 2.904 
3 0.166  3 0.817 1.707 
4 0.154  4 0.595 2.348 
5 0.142  5 0.466 0.758 
6 0.129  6 0.381 0.168 
7 0.115  7 0.322 2.16 

  

The values from Table 4-1 are used as input to eq. 4-11 and eq. 4-12 to construct the amplitude and 

phase shift arrays according to Figure 3-1, see Table 4-2. The real and imaginary parts are calculated 

according to eq. 4-13 and eq. 4-14 and shown in Table 4-2. 
 
Table 4-2. The amplitude and random phase shift arrays constructed from the values in Table 4-1, 
together with the corresponding imaginary numbers array 

a(f) phase shift  Re part Im part 

0 0  0.000 0.000 
2.735 1.045  1.373 2.366 
1.276 2.904  -1.240 0.300 
0.817 1.707  -0.111 0.809 
0.595 2.348  -0.417 0.424 
0.466 0.758  0.338 0.320 
0.381 0.168  0.376 0.064 
0.322 2.16  -0.179 0.267 

0 0  0.000 0.000 
0.322 -2.16  -0.179 -0.267 
0.381 -0.168  0.376 -0.064 
0.466 -0.758  0.338 -0.320 
0.595 -2.348  -0.417 -0.424 
0.817 -1.707  -0.111 -0.809 
1.276 -2.904  -1.240 -0.300 
2.735 -1.045  1.373 -2.366 

 

The complex conjugation and the following bit reversal is carried out on the resulting imaginary 

array from Table 4-2, see Table 4-3. 
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Table 4-3. The complex conjugation and bit reversal ordering of the imaginary array in Table 
4-2 

Frequency domain  Complex conjugate  Bit reversed 
Entry Re part Im part  Re part Im part  Entry Re part Im part 

0 0.000 0.000  0.000 0.000  0 0.000 0.000 
1 1.373 2.366  1.373 -2.366  8 0.000 0.000 
2 -1.240 0.300  -1.240 -0.300  4 -0.417 -0.424 
3 -0.111 0.809  -0.111 -0.809  12 -0.417 0.424 
4 -0.417 0.424  -0.417 -0.424  2 -1.240 -0.300 
5 0.338 0.320  0.338 -0.320  10 0.376 0.064 
6 0.376 0.064  0.376 -0.064  6 0.376 -0.064 
7 -0.179 0.267  -0.179 -0.267  14 -1.240 0.300 
8 0.000 0.000  0.000 0.000  1 1.373 -2.366 
9 -0.179 -0.267  -0.179 0.267  9 -0.179 0.267 

10 0.376 -0.064  0.376 0.064  5 0.338 -0.320 
11 0.338 -0.320  0.338 0.320  13 -0.111 0.809 
12 -0.417 -0.424  -0.417 0.424  3 -0.111 -0.809 
13 -0.111 -0.809  -0.111 0.809  11 0.338 0.320 
14 -1.240 -0.300  -1.240 0.300  7 -0.179 -0.267 
15 1.373 -2.366  1.373 2.366  15 1.373 2.366 

 

The bit-reversed complex numbers are run through the four stages of butterfly calculations according 

to Table 4-4 to Table 4-7. 

 
Table 4-4. The first stage of butterfly calculations  

Stage 1 
     Input to calculation      Twiddle factor W1

k
         Result stage 1 

Re Im Re Im Re Im 

0.000 0.000   0.000 0.000 
0.000 0.000 1 0 0.000 0.000 

-0.417 -0.424   -0.835 0.000 
-0.417 0.424 1 0 0.000 -0.849 
-1.240 -0.300   -0.864 -0.237 
0.376 0.064 1 0 -1.616 -0.364 
0.376 -0.064   -0.864 0.237 

-1.240 0.300 1 0 1.616 -0.364 
1.373 -2.366   1.194 -2.098 

-0.179 0.267 1 0 1.551 -2.633 
0.338 -0.320   0.227 0.489 

-0.111 0.809 1 0 0.449 -1.129 
-0.111 -0.809   0.227 -0.489 
0.338 0.320 1 0 -0.449 -1.129 

-0.179 -0.267   1.194 2.098 
1.373 2.366 1 0 -1.551 -2.633 

 
Table 4-5. The second stage of butterfly calculations  

Stage 2 
        Result stage 1      Twiddle factor W2

k
         Result stage 2 

Re Im Re Im Re Im 

0.000 0.000   -0.835 0.000 
0.000 0.000   -0.849 0.000 

-0.835 0.000 1 0 0.835 0.000 
0.000 -0.849 0 -1 0.849 0.000 

-0.864 -0.237   -1.729 0.000 
-1.616 -0.364   -1.980 -1.980 
-0.864 0.237 1 0 0.000 -0.473 
1.616 -0.364 0 -1 -1.252 1.252 
1.194 -2.098   1.421 -1.609 
1.551 -2.633   0.422 -3.082 
0.227 0.489 1 0 0.967 -2.587 
0.449 -1.129 0 -1 2.681 -2.184 
0.227 -0.489   1.421 1.609 

-0.449 -1.129   -3.082 0.422 
1.194 2.098 1 0 -0.967 -2.587 

-1.551 -2.633 0 -1 2.184 -2.681 
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Table 4-6. The third stage of butterfly calculations  

Stage 3 
        Result stage 2      Twiddle factor W4

k
         Result stage 3 

Re Im Re Im Re Im 

-0.835 0.000   -2.564 0.000 
-0.849 0.000   -3.648 0.000 
0.835 0.000   0.362 0.000 
0.849 0.000   2.619 0.000 

-1.729 0.000 1 0 0.894 0.000 
-1.980 -1.980 0.707 -0.707 1.951 0.000 
0.000 -0.473 0 -1 1.308 0.000 

-1.252 1.252 -0.707 -0.707 -0.922 0.000 
1.421 -1.609   2.842 0.000 
0.422 -3.082   -1.459 -0.604 
0.967 -2.587   -1.621 -1.621 
2.681 -2.184   -0.759 -1.832 
1.421 1.609 1 0 0.000 -3.218 

-3.082 0.422 0.707 -0.707 2.303 -5.560 
-0.967 -2.587 0 -1 3.554 -3.554 
2.184 -2.681 -0.707 -0.707 6.121 -2.535 

 
Table 4-7. The fourth stage of butterfly calculations and the resulting trace  

Stage 4   The trace 
        Result stage 3    Twiddle factor W8

k
        Result stage 4  

Re Im Re Im Re Im  vertex Height 

-2.564 0.000   0.279 0.000  0 0.017 
-3.648 0.000   -5.228 0.000  1 -0.327 
0.362 0.000   -1.930 0.000  2 -0.121 
2.619 0.000   0.635 0.000  3 0.040 
0.894 0.000   -2.324 0.000  4 -0.145 
1.951 0.000   -4.067 0.000  5 -0.254 
1.308 0.000   -3.718 0.000  6 -0.232 

-0.922 0.000   -7.546 0.000  7 -0.472 
2.842 0.000 1 0 -5.406 0.000  8 -0.338 

-1.459 -0.604 0.924 -0.383 -2.069 0.000  9 -0.129 
-1.621 -1.621 0.707 -0.707 2.654 0.000  10 0.166 
-0.759 -1.832 0.383 -0.924 4.602 0.000  11 0.288 
0.000 -3.218 0 -1 4.112 0.000  12 0.257 
2.303 -5.560 -0.383 -0.924 7.969 0.000  13 0.498 
3.554 -3.554 -0.707 -0.707 6.334 0.000  14 0.396 
6.121 -2.535 -0.924 -0.383 5.703 0.000  15 0.356 

 

As expected, the imaginary array only contains zeros after the final stage of butterfly calculations, 

and hence the complex conjugation does not have to be carried out. However, the real part needs to 

be divided by the number of entries, 16, to get the heights of the trace. The trace is shown in Figure 

4-1. 
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 Figure 4-1. Visualisation of the resulting fractal line from the power spectrum and phase shift listed 

in Table 4-1 

4.7 Code 

    '=========================================================================== 

    '===                          generate_FFT_line                          === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Routine that generates a fractal line using Inverse Fast Fourier   === 

    '===  Transform                                                          === 

    '====                                                                   ==== 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  size  = Number of vertices along the line                          === 

    '===  hurst = The Hurst coefficient defining the fractal dimension       === 

    '===  sdh1p = Standard deviation of height difference between adjacent   === 

    '===          vertices                                                   === 

    '===  seed  = The seed for the random number generator                   === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  dataVector   = The vector containing the height value describing   === 

    '===                 the fractal line                                    === 

    '===  errorMessage = If something goes wrong, save information in this   === 

    '===                 string                                              === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson, March 14 2017                          === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub generate_FFT_line(ByRef size As Integer, _ 

                          ByRef hurst As Double, _ 

                          ByRef sdh1p As Double, _ 

                          ByRef seed As Double, _ 

                          ByRef dataVector() As Double, _ 

                          ByRef errorMessage As String) 

        Dim i As Integer 

 

        Dim pi As Double 

        Dim slope As Double 

        Dim amplConst As Double 

        Dim amplVect(size / 2 - 1) As Double 

        Dim phaseShift(size / 2 - 1) As Double 

        Dim Re(size - 1) As Double 

        Dim Im(size - 1) As Double 

 

        'Define Pi 

        pi = Atan(1) * 4 

 

        'Initiate the seed 

        Randomize(seed) 
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        'Calculate amplitude slope 

        slope = -(hurst + 1 / 2) 

 

        'Initiate datavector 

        For i = 0 To size - 1 

            dataVector(i) = 0 

        Next 

 

        'Calculate constant in eq. 4-10  

        amplConst = calcAmplConst(sdh1p, size, hurst) 

 

        'Construct the amplitude array (eq. 4-10) [ Step 2 ] 

        For i = 1 To size / 2 - 1 

            amplVect(i) = amplConst * i ^ slope 

        Next 

 

        'Generate the pseudo random phase shifts [ Step 3 ] 

        For i = 1 To size / 2 - 1 

            phaseShift(i) = Rnd() * 2 * pi 

        Next 

 

        'Set the first values to zero 

        Re(0) = 0 

        Im(0) = 0 

 

        'Populate the first halves of the Real and imaginary arrays with values 

        For i = 1 To size / 2 - 1 

 

            'Divide the amplitude into the real and imaginary part according to 

            'the phase shift (eq. 4-13 and 4-14) [ Step 4 ] 

            Re(i) = amplVect(i) * Cos(phaseShift(i)) 

            Im(i) = amplVect(i) * Sin(phaseShift(i)) 

        Next 

 

        'Make the Nyquist frequency be zero 

        Re(size / 2) = 0 

        Im(size / 2) = 0 

 

        'Mirror the data with complex conjugate (eq. 4-11 and 4-12) 

        For i = (size / 2) + 1 To size - 1 

            Re(i) = Re(size - i) 

            Im(i) = -Im(size - i) 

        Next 

 

        'Do the inverse FFT [ Step 5, 6, 7 and 8 ] 

        Call invFFT(Re, Im, size) 

 

        'Copy the data to return matrix 

        For i = 0 To size - 1 

            dataVector(i) = Re(i) 

        Next 

        dataVector(size) = Re(0) 

 

    End Sub 
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5 Evaluating fractal lines 

There are many different methods to evaluate the fractal parameters. For example, Russ (1994) used 

five methods: 1) Minowski, 2) Korcak, 3) Hurst, 4) Root-mean-squares (RMS) differences, and 5) 

Power Spectrum using FFT. That evaluation revealed some substantial differences between the 

fractal dimension generated and the measured dimension. Candela et al. (2009) evaluated six 

methods: 1) Root-mean-squares Correlation, 2) Maximum-minimum Height Difference, 3) Height-

height Correlation Function, 4) Standard Deviation of the Correlation Function, 5) Fourier Power 

Spectrum, and 6) Average Wavelet Coefficient Power Spectrum. Their analyses also revealed 

differences in the values obtained using different methods. Malinverno (1990) showed how the Box 

Count method can be applied to self-affine traces. This section explains four methods used in the 

main paper: 1) Analysing the Power Spectrum using Fast Fourier Transform 2) Standard Deviation 

of the Correlation Function, 3) Korcak Plot of Zero Sets and 4) Box Count. 

 

The four methods are described in the following subsections. Each description begins with an 

introductory part where some advantages and disadvantages are discussed and then the theory is 

presented, followed by a worked example. Each method ends with a subsection where an example 

code of implementation in Visual Basic is provided. 

 

All the worked examples use the same fractal line. The vertices are listed in Table 5-1 and the line is 

visualised in Figure 5-1. 

 
Table 5-1. Vertices of the fractal line shown in Figure 5-1 

X Y 

0.000 0.315 
1.000 0.166 
2.000 0.260 
3.000 0.033 
4.000 -0.241 
5.000 -0.596 
6.000 -0.450 
7.000 -0.204 
8.000 -0.281 
9.000 0.125 

10.000 0.105 
11.000 -0.069 
12.000 -0.041 
13.000 0.171 
14.000 0.333 
15.000 0.443 
16.000 0.315 

 

 
Figure 5-1. Visualisation of the fractal line used in the worked examples.  
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5.1 Analysing the Power Spectrum using Fast Fourier Transform, 
FFT  

The advantage of analysing the power spectrum using the FFT method is that it is fast and can infer 

both the dimension and the asperity measure of the trace. The method is also good at spotting 

frequencies that are under-represented, i.e. the highest frequency that the digitalisation of the trace 

captures. A drawback is that only traces that conform to 2
n
 vertices can be analysed. If the trace does 

not conform to the 2
n
 vertices, one can use a shorter piece of the trace, fill the rest with zeros or use 

Discrete Fourier Transform, DFT (Smith 1997). However, DFT is a very slow process and not 

recommended. Another drawback with the FFT method is that the power spectrum is scattered at 

high frequencies and sensitive to any outlier at the low frequencies. These two shortcomings may 

make the regression uncertain. 

5.1.1 Theory 

The method is exactly the inverse of the generation method, IFT of Power Spectrum, see section 4. 

Hence, if a trace of 2
n
 vertices is extracted and run through FFT, the results from the transform will 

be the amplitude and phase shift vectors. The numbers in the amplitude vector are squared to get the 

power spectrum. The power is a function of the frequency, f, and is proportional to 1/f
β
. Hence, by 

plotting the power as a function of frequency in logarithmic space, a linear regression can be 

performed to evaluate β. The relationship between the slope of the regression line and H is described 

by:  

 

 
2

1



H  eq. 5-1 

   

where:  

β = slope of the regression, between 1 and 3 for a fractal line 

H = Hurst exponent. 

 

The asperity measure σδh(1p), i.e. the standard deviation of height differences of adjacent vertices, is 

also inferred from the power spectrum according to: 
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      eq. 5-2 

   

where:  

σδh(1p) = standard deviation of height differences of adjacent vertices of the fractal line 

cI = intercept of the regression of the power spectrum 

f = frequency, i.e. number of waves per trace length  

N = number of vertices of the fractal line  

H = Hurst exponent.  

 

The derivation of eq. 5-2 can be found in section 4.1. 

5.1.2 Worked example 

The fractal line shown in Figure 5-1 is used in this example of how to infer the fractal parameters H 

and σδh(1p) using FFT and Power Spectrum. The method has the following steps: 

 

1. Extract the height data coordinates. 

2. Sort the data according to bit-reversed order. 

3. Do the butterfly calculations. 

4. Calculate the power of each length frequency. 

5. Do a linear regression of logged powers and length frequencies. 

6. Use the slope and intercept to calculate the fractal parameters. 
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The extracted coordinates are listed in Table 5-1. These data are sorted according to bit-reversed 

order, following the algorithm in Figure 3-2b, and showed in table Table 5-2. 

 
Table 5-2. Reverse bit order of the 16 vertices and the bit reversal ordered data  

S = 0 S = 1 S = 2 S = 3 S = 4  Ordered Data 

0 0 0 0 0  0.315 
 1 2 4 8  -0.281 
  1 2 4  -0.241 
  3 6 12  -0.041 
   1 2  0.260 
   5 10  0.105 
   3 6  -0.450 
   7 14  0.333 
    1  0.166 
    9  0.125 
    5  -0.596 
    13  0.171 
    3  0.033 
    11  -0.069 
    7  -0.204 
    15  0.443 

 

The calculations of the twiddle factors for the butterfly calculations are shown in eq. 3-2. The input 

and output of the four stages of butterfly calculations can be followed in Table 5-3 to Table 5-6. The 

power (Table 5-6) is calculated as the sum of the squared real and imaginary numbers of the 

amplitude vector after stage 4.  

 

 
Table 5-3. The first stage of butterfly calculations  

Stage 1 
Trace Twiddle factor W1

k
 Result stage 1 

Re Im Re Im Re Im 

0.315 0   0.034 0 
-0.281 0 1 0 0.596 0 
-0.241 0   -0.282 0 
-0.041 0 1 0 -0.201 0 
0.260 0   0.365 0 
0.105 0 1 0 0.156 0 

-0.450 0   -0.116 0 
0.333 0 1 0 -0.783 0 
0.166 0   0.291 0 
0.125 0 1 0 0.041 0 

-0.596 0   -0.425 0 
0.171 0 1 0 -0.767 0 
0.033 0   -0.036 0 

-0.069 0 1 0 0.102 0 
-0.204 0   0.239 0 
0.443 0 1 0 -0.647 0 
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Table 5-4. The second stage of butterfly calculations  

Stage 2 
Result stage 1 Twiddle factor W2

k
 Result stage 2 

Re Im Re Im Re Im 

0.034 0   -0.248 0.000 
0.596 0   0.596 0.201 

-0.282 0 1 0 0.317 0.000 
-0.201 0 0 -1 0.596 -0.201 
0.365 0   0.248 0.000 
0.156 0   0.156 0.783 

-0.116 0 1 0 0.481 0.000 
-0.783 0 0 -1 0.156 -0.783 
0.291 0   -0.135 0.000 
0.041 0   0.041 0.767 

-0.425 0 1 0 0.716 0.000 
-0.767 0 0 -1 0.041 -0.767 
-0.036 0   0.202 0.000 
0.102 0   0.102 0.647 
0.239 0 1 0 -0.275 0.000 

-0.647 0 0 -1 0.102 -0.647 

 

 
Table 5-5. The third stage of butterfly calculations  

Stage 3 
Result stage 2 Twiddle factor W4

k
 Result stage 3 

Re Im Re Im Re Im 

-0.248 0.000   0.000 0.000 
0.596 0.201   1.260 0.644 
0.317 0.000   0.317 -0.481 
0.596 -0.201   -0.067 0.243 
0.248 0.000 1 0 -0.496 0.000 
0.156 0.783 0.707 -0.707 -0.067 -0.243 
0.481 0.000 0 -1 0.317 0.481 
0.156 -0.783 -0.707 -0.707 1.260 -0.644 

-0.135 0.000   0.068 0.000 
0.041 0.767   0.570 1.152 
0.716 0.000   0.716 0.275 
0.041 -0.767   -0.488 -0.381 
0.202 0.000 1 0 -0.337 0.000 
0.102 0.647 0.707 -0.707 -0.488 0.381 

-0.275 0.000 0 -1 0.716 -0.275 
0.102 -0.647 -0.707 -0.707 0.570 -1.152 

 

 
Table 5-6. The fourth stage of butterfly calculations and the resulting power  

Stage 4   Values used for 
inference of   

H and σδh(1p) Result stage 3 
Twiddle factor 

W8
k
 Result stage 4 

 

Re Im Re Im Re Im  frequency Power 

0.000 0.000   0.068 0.000  - 0.005 
1.260 0.644   2.227 1.490  1 7.180 
0.317 -0.481   1.017 -0.793  2 1.663 

-0.067 0.243   -0.606 0.548  3 0.668 
-0.496 0.000   -0.496 0.337  4 0.360 
-0.067 -0.243   0.472 0.063  5 0.227 
0.317 0.481   -0.384 0.169  6 0.176 
1.260 -0.644   0.293 0.203  7 0.127 
0.068 0.000 1 0 -0.068 0.000  - 0.005 
0.570 1.152 0.924 -0.383 0.293 -0.203  - 0.127 

0.716 0.275 0.707 -0.707 -0.384 -0.169  - 0.176 
-0.488 -0.381 0.383 -0.924 0.472 -0.063  - 0.227 
-0.337 0.000 0 -1 -0.496 -0.337  - 0.360 
-0.488 0.381 -0.383 -0.924 -0.606 -0.548  - 0.668 

0.716 -0.275 -0.707 -0.707 1.017 0.793  - 1.663 
0.570 -1.152 -0.924 -0.383 2.227 -1.490  - 7.180 
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Figure 5-2. Power as a function of length frequency.  

 

The power is plotted as a function of the frequency in logarithmic space, Figure 5-2. From this 

graph, the slope and intercept are inferred to –2.2 and 7.41, respectively. From the inferred β 

value, 2.2, the Hurst exponent, 0.6, is computed using eq. 5-1. 

 

The asperity measure σδh(1p) is calculated using eq. 5-2 (with N = 16 and √c = √7.41 = 2.72) and 

becomes 0.20. 

5.1.3 Code 

    '=========================================================================== 

    '===                           FFT_evaluation                            === 

    '=========================================================================== 

    '===  Routine calculating the fractal dimension using Fast Fourier       === 

    '===  Transform. The number of data has to conform to 2^n, and hence     === 

    '===  the last value are omitted from the 2^n + 1 data points. The       === 

    '===  value at index 0 is the same as the value at index nofData, since  === 

    '===  the analysis is done on a simple detrending of the data            === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  yVect(0 to nofData) = the height data vector in arithmetic space   === 

    '===  nofData             = the number of vertices of the trace          === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  H            = the Hurst exponent                                  === 

    '===  sdh1p        = standard deviation of height differences between    === 

    '===                 adjacent vertices, σδh(1p)                          === 

    '===  errorMessage = string containing possible errorMessage             === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson, February 26 2016                       === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub FFT_evaluation(ByRef yVect() As Double, _ 

                       ByRef nofData As Integer, _ 

                       ByRef H As Double, _ 

                       ByRef sdh1p As Double, _ 

                       ByRef errorMessage As String) 

 

        'Define variables 

        Dim k As Integer         'counter 

        Dim minBin As Integer 'index for the lowest bin to regard i.e 1 

        Dim maxBin As Integer 'index for the highest bin to regard i.e. N/2-1 

 

        Dim slope As Double        'Slope of the regression line 

        Dim intersection As Double 'Intersection of the regression line 

        Dim sum2 As Double         'Sum of squared values 

 

        Dim ReVect(nofData) As Double          'real numbers 

        Dim ImVect(nofData) As Double          'imaginary numbers 
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        Dim powVect(nofData / 2 - 1) As Double 'power in each bin 

        Dim xVect(nofData / 2 - 1) As Double   'length frequencies  

 

 

        'set up the Arrays to be used in the FFT-analysis [ Step 1 ] 

        For i = 0 To nofData - 1 

            ReVect(i) = yVect(i) 

            ImVect(i) = 0 

        Next 

 

        'Do the Fast Fourier transform [ Step 2 and 3 ] 

        Call FFT(ReVect, ImVect, nofData) 

 

        'Make the power vector and frequency vector into log space [ Step 4 ] 

        For i = 1 To nofData / 2 - 1 

            powVect(i) = Log10((ReVect(i) ^ 2 + ImVect(i) ^ 2)) 

            xVect(i) = Log10(i) 

        Next 

 

        '----  Calculate the Hurst parameter  ---- 

        'The first bin is only dependent on the average value of the curve, and  

        'hence arbitrary, if the average is 0, then the power will also be zero 

        minBin = 1 

 

        'N/2 is an arbitrary value dependent on the phase shift, and the N/2-1  

        'following values are just mirrors of the N/2-1 proceeding values 

        maxBin = nofData / 2 - 1 

 

        'Do a linear regression in log space [ Step 5 ] 

        Call regression_analysis_of_line(xVect, powVect, minBin, maxBin, _ 

                                         slope, intersection, errorMessage) 

 

        'Calculate H using eq. 5-1 [ Step 6 ] 

        H = (-slope - 1) / 2 

 

 

        '----  Calculate σδh(1p)  ---- 

        'Initiate the sum varable 

        sum2 = 0 

 

        'Make the frequency vector into arithmetic space  

        For i = 1 To nofData / 2 - 1 

            xVect(i) = i 

        Next 

 

        'Make the intesection into arithmetic space 

        intersection = 10 ^ intersection 

 

        'Do the summation in the denominator in eq. 5-2 

        For k = 1 To nofData / 2 - 1 

            sum2 = sum2 + _ 

                   (xVect(k) ^ (-(H + 0.5)) * Sin(PI * xVect(k) / nofData)) ^ 2 

        Next k 

 

        'Calculate σδh(1p) according to eq. 5-2 [ Step 6 ] 

        sdh1p = 2 * 2 ^ 0.5 / nofData * intersection ^ 0.5 * sum2 ^ 0.5 

 

    End Sub 

5.2 Standard Deviation of the Correlation Function, RMS-COR 

The Standard Deviation of the Correlation Function method is intuitive and easy to implement. The 

method is capable of estimating both the Hurst exponent and asperity measure and it can use an 

arbitrary amount of equally spaced vertices. However, a drawback is that it is sensitive to the finite 

length of the traces. The shorter the trace, the larger the effect.  

5.2.1 Theory 

The standard deviation of the correlation function makes use of the relationship between the standard 

deviation of height differences at different length intervals. A self-affine line needs to be scaled by 

different amounts in the two directions to appear similar, see Figure 2-1. Hence, if the abscissa is 

scaled by a factor λ, the ordinate needs to be scaled by λ
H
. This implies that the standard deviation of 

height differences between vertices at different distances will scale in the same way, i.e.: 
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  Hh v c v     eq. 5-3 

   

where:  

cσ = standard deviation of height differences of adjacent vertices 

Δv = distance between vertices 

H = Hurst exponent.  

 

The standard deviation can be calculated according to e.g. Johnson et al. (2011) as: 

 

     
22x E x E x    eq. 5-4 

 

Hence, the standard deviation of height differences of vertices Δv apart can be calculated according 

to: 
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 eq. 5-5 

   

where:  

σδh(Δv) = standard deviation of height differences of vertices Δv apart 

Δv = number of vertices between the height values  

h(v) = height value at vertex v 

N = number of vertices of the trace. 

 

For a self-affine fractal, plotting σδh(Δv) as a function of Δv will render a straight line in logarithmic 

space. The slope of the regression equals H and the intercept is σδh(1p). However, as Δv approaches 

N, σδh(Δv)will not increase linearly in logarithmic space but rather decrease, due to the finite length 

effects. It is recommended to use only Δv < 0.2·N (Malinverno 1990) to avoid these effects. 

5.2.2 Worked example 

The fractal line shown in Figure 5-1 is used in this example of how to infer the fractal parameters H 

and σδh(1p) using the standard deviation of the correlation function method. The method has the 

following steps: 

 

1. Extract the height data coordinates. 

2. Calculate the standard deviation of height differences using different length intervals. 

3. Do a linear regression of logged height differences and length intervals. 

4. Use the slope and intercept to calculate the fractal parameters. 

 

The extracted coordinates are listed in Table 5-1 and recapitulated in Table 5-7. These data are used 

to calculate the height differences of adjacent vertices, two vertices apart, four vertices apart and 

eight vertices apart, see Figure 5-3 and Table 5-7. These numbers are used to calculate the 

population standard deviation according to eq. 5-3. 
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Figure 5-3. Height differences using different length intervals. 

 
Table 5-7. The calculation of standard deviation of height differences of vertices different lengths apart, 
together with the population standard deviation 

vertex Height Δv = 1 Δv = 2 Δv = 4 Δv = 8 

0 0.315     
1 0.166 -0.150    
2 0.260 0.095 -0.055   
3 0.033 -0.228 -0.133   
4 -0.241 -0.274 -0.502 -0.557  
5 -0.596 -0.355 -0.629 -0.762  
6 -0.450 0.146 -0.208 -0.710  
7 -0.204 0.246 0.392 -0.237  
8 -0.281 -0.077 0.168 -0.040 -0.596 
9 0.125 0.406 0.329 0.721 -0.041 

10 0.105 -0.020 0.386 0.554 -0.156 
11 -0.069 -0.174 -0.194 0.135 -0.102 
12 -0.041 0.028 -0.145 0.240 0.201 
13 0.171 0.212 0.240 0.046 0.767 
14 0.333 0.162 0.374 0.229 0.783 
15 0.443 0.109 0.272 0.512 0.647 
16 0.315 -0.127 -0.018 0.356 0.596 

      
Std dev  0.204 0.314 0.462 0.461 
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Figure 5-4. Height differences as a function of length interval. 

 

The standard deviations of the height differences are plotted as a function of the length interval in 

logarithmic space, Figure 5-4. The standard deviation for the length interval equal to eight vertices is 

affected by the finite length and is, hence, not a part inferring the fractal parameters. The graph is 

used to infer the slope, 0.6, and the intercept, 0.20, which equals H and σδh(1p), respectively. 

5.2.3 Code 

    '=========================================================================== 

    '===                         RMS_COR_evaluation                          === 

    '=========================================================================== 

    '===  Routine calculating the slope and amplitude using RMS_COR          === 

    '===  described in Candela et al., 2009, Characterisation of Fault       === 

    '===  Roughness at Various Scales: Implications of Three-Dimensional     === 

    '===  High Resolution Topography Measurements,                           === 

    '===  Pure and Applied Geophysics, vol 166 page 1823                     === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  dataVector   = the vector containing the height data along the     === 

    '===                 trace, starting at position 0, and end at position  === 

    '===                 N                                                   === 

    '===  nofData      = the number of data in dataVector                    === 

    '===  minBin       = index for the lowest bin to regard                  === 

    '===  maxBin       = index for the highest bin to regard                 === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  sdh1p        = standard deviation of height differences between    === 

    '===                 adjacent vertices, σδh(1p)                          === 

    '===  H            = the Hurst exponent                                  === 

    '===  errorMessage = string containing possible errorMessage             === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson, February 12 2014                       === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub RMScor_evaluation(ByRef dataVector() As Double, _ 

                          ByVal nofData As Integer, _ 

                          ByVal minBin As Integer, _ 

                          ByVal maxBin As Integer, _ 

                          ByRef sdh1p As Double, _ 

                          ByRef H As Double, _ 

                          ByRef errorMessage As String) 

 

        'Declaration of variables 

        Dim pop As Boolean   'Flag for calculation of population std dev, TRUE,  

        '                     or sample std dev, FALSE 

 

        Dim i, j As Integer  'Counters 

 

        Dim diff As Double   'difference between two numbers 

        Dim xSum As Double   'sum of values 
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        Dim x2sum As Double  'sum of squared values 

        Dim mean As Double   'mean value, not used but needed for the function  

        '                     that calculates mean and standard deviation 

        Dim stddev As Double 'standard deviation of height differences 

 

        Dim steps(maxBin) As Double  'step sizes that will be used to calculate 

        '                             the standard deviation between. It should 

        '                             be integers, but need to be double to be  

        '                             used in the regression analysis 

        Dim Stdevs(maxBin) As Double 'vector containing the standard deviation  

        '                             of height differences of vertices steps(x) 

        '                             apart 

 

        'initiate the flag for standard deviation calculations 

        pop = True 

 

        'generate Step sizes [1 2 4 8 16 32 64 128 ... etc] 

        steps(1) = 1 

        For i = 2 To maxBin 

            steps(i) = steps(i - 1) * 2 

        Next 

 

        'Calculate the standard deviation of height differences for the  

        'different step sizes, eq. 5-4  [ Step 2 ] 

        For i = 1 To maxBin 

 

            'initiate sums 

            xSum = 0 

            x2sum = 0 

 

            'Calculate sum and squared sum to be used for calculation of  

            'standard deviation 

            For j = 0 To nofData - steps(i) 

                diff = dataVector(j + steps(i)) - dataVector(j) 

                xSum = xSum + diff 

                x2sum = x2sum + diff * diff 

            Next 

 

            'Calculate standard deviation 

            mean_and_stdev_from_sums(xSum, x2sum, j, pop, _ 

                                     mean, stddev, errorMessage) 

 

            'Save the current step size's standard deviation 

            Stdevs(i) = stddev 

 

        Next 

 

        'transform data to log space 

        For i = 1 To maxBin 

            steps(i) = Log10(steps(i)) 

            Stdevs(i) = Log10(Stdevs(i)) 

        Next 

 

        'Calculate the slope and intercept of the data in log space [ Step 3 ] 

        Call regression_analysis_of_line(steps, Stdevs, minBin, maxBin, _ 

                                         H, sdh1p, errorMessage) 

 

        'Convert intersection in log space back to arithmetic space [ Step 4 ] 

        sdh1p = 10 ^ sdh1p 

 

        'H = slope; hence, no transformations needed 

 

errorTrap: 

 

    End Sub 

5.3 Korcak Plot of Zero Sets, Zero set/Korcak 

The Korcak Plot of Zero Sets method is intuitive and easy to implement. The method can use an 

arbitrary amount of arbitrarily spaced vertices, which makes it very flexible. However, it can only 

estimate the Hurst exponent and not any asperity measure. Another drawback is that it is very 

sensitive to the length of the traces; the larger H, the more sensitive. 
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5.3.1 Theory 

The Korcak Plot of Zero Sets method makes use of the fact that the crossings between a line parallel 

to the abscissa, the length axis, and a fractal line will produce a Cantor dust. The method is called the 

zero set of the fractal line since, in its original implementation, it only recorded the lengths between 

the points where the fractal line crossed the value zero. The complementary cumulative number of 

lengths larger than a specific length is known as the Korcak relationship and is expressed as (e.g. 

Russ 1994): 

 

  sN L l l   eq. 5-6 

   

where: 

N(L≥l) = number of lengths, L, exceeding the length l 

l = studied length 

s = slope of the regression line in logarithmic space.   

 

The relationship between the slope and the Hurst exponent is: 

 

1H s   eq. 5-7 

 

where: 

H = Hurst exponent 

s = slope of the line in logarithmic space.   

 
A fracture trace is usually too short to give reliable results by only sampling intersections between 

the fractal line and the zero line. Instead, to get a larger number of length segments, it is possible to 

introduce multiple straight lines parallel with the abscissa and measure all lengths between the 

intersections of the fractal line and the multiple horizontal lines. 

 

Due to the finite length of the trace, the method will constantly underestimate the number of long 

intervals. This implies that the cumulative number of lengths exceeding a specific length is always 

underestimated and will bias all number of lengths shorter than this specific length. Hence, the data 

will not plot as a straight line in logarithmic space, but drop towards a steeper slope at the right end. 

This can, in some sense, be overcome by ignoring the large length intervals and only using the 

smaller ones when evaluating the slope. However, even if the rightmost data points are disregarded, 

the Hurst exponent will always be underestimated. 

 

5.3.2 Worked example 

The fractal line shown in Figure 5-1 is used in this example of how to infer the Hurst exponent using 

the Korcak Plot of Zero Sets method. The method has the following steps: 

 

1. Extract the height data coordinates. 

2. Find the maximum and minimum height values. 

3. Draw an arbitrary amount of lines parallel to the abscissa. 

4. Calculate the lengths between the intersections of the horizontal line and the trace. 

5. Sort the data and calculate the number of lengths longer than a specific length in logarithmic 

space. 

6. Do a linear regression of number of lengths vs the specific length. 

7. Use the slope to calculate the Hurst exponent. 

 

The extracted coordinates are listed in Table 5-1 and recapitulated in Table 5-8. From the data, the 

maximum and minimum height is 0.443 and –0.596, respectively. Nine horizontal lines are drawn at 

heights listed in Table 5-8 and shown in Figure 5-5. 
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Table 5-8. The vertices, together with the data on the lines parallel to the abscissa 

vertex height  Statistic 

0 0.315  Max 0.443 
1 0.166  Min -0.596 
2 0.260  Diff 1.039 
3 0.033  # lines 9 
4 -0.241  Δh 0.115 

5 -0.596    

6 -0.450  Zero lines 

7 -0.204  Line # Height 
8 -0.281  1 0.385 
9 0.125  2 0.269 

10 0.105  3 0.154 
11 -0.069  4 0.039 
12 -0.041  5 -0.077 
13 0.171  6 -0.192 
14 0.333  7 -0.308 
15 0.443  8 -0.423 
16 0.315  9 -0.538 

 

 

 
Figure 5-5. Lengths of the zero sets. 

 

The lengths between the intersections of the nine horizontal lines and the fractal line are shown in 

Figure 5-5 and listed in Table 5-9. The lengths are sorted in ascending order and the number of 

lengths exceeding a given value is calculated, Table 5-9. 

 
Table 5-9. The lengths between crossings, together with complementary cumulative number of lengths 

Line # Length  Sorted l  l N(L≥l) 

1 0.980  0.557  1 9 
2 13.302  0.980  2 6 
3 10.455  1.592  4 5 
4 5.814  1.597  8 2 

4 1.592  1.997    
4 1.997  2.392    
5 5.104  4.399    
6 4.399  5.104    
7 2.392  5.814    
8 1.597  10.455    
9 0.557  13.302    
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Figure 5-6. Korcak plot of N(L≥l).  

 

The number of lengths exceeding a specific length is plotted in logarithmic space as a function of the 

specific length, Figure 5-6. The number of lengths >8 is affected by the finite length and is, hence, 

not a part inferring the slope. The slope is –0.4, which, according to eq. 5-7, results in a Hurst 

exponent of 0.6. 

5.3.3 Code 

    '=========================================================================== 

    '===                   zerosets_evaluation_variable_dx                   === 

    '=========================================================================== 

    '===  Routine calculating the slope using Korcak plot of zero sets as    === 

    '===  described in "Fractal Surfaces" by John C. Russ, 1994,             === 

    '===  ISBN 0-306-44702-9, pp 13-14.                                      === 

    '===  The method may use arbitrary Δx btewwen vertices                   === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  lVect        = the length coordinates using indeces 0 to N-1       === 

    '===  hVect        = the height coordinates using indeces 0 to N-1       === 

    '===  nofData      = the number of data in hVect                         === 

    '===  nofLines     = number of lines between max and min height that     === 

    '===                 will be used for collecting lengths between         === 

    '===                 intersections                                       === 

    '===  minBin       = index of the lowest bin to regard                   === 

    '===  maxBin       = index of the highest bin to regard                  === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  H            = the slope of the curve of standard deviations       === 

    '===                 using all bins                                      === 

    '===  errorMessage = string containing possible errorMessage             === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson, April 25 2016                          === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub zerosets_evaluation_variable_dx(ByRef lVect() As Double, _ 

                                        ByRef hVect() As Double, _ 

                                        ByVal nofData As Integer, _ 

                                        ByVal nofLines As Integer, _ 

                                        ByVal minBin As Integer, _ 

                                        ByVal maxBin As Integer, _ 

                                        ByRef H As Double, _ 

                                        ByRef errorMessage As String) 

 

        Dim firstIsAlreadyHit As Boolean 'flag to keep track of the first  

        '                                 intersection between the current zero  

        '                                 line and the fractal line 

 

        Dim i, j As Integer           'counters 

        Dim lengthInterval As Integer 'truncated length to find correct bin  

        Dim nofBinData As Integer     'number of elements in the array bindata 
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        Dim maxZ As Double         'maximum value in hVect 

        Dim minZ As Double         'minimum value in hVect 

        Dim lineDist As Double     'vertical distance between the zero lines 

        Dim currLevel As Double    'height value for the current zero line 

        Dim currCoord As Double    'current x-coordinate where the zero line at  

        '                           currLevel intersects the fractal line 

        Dim lastCoord As Double    'last x-coordinate where an intersection  

        '                           between the current zero line and the  

        '                           fractral line occured 

        Dim length As Double       'length between intersections 

        Dim slope As Double        'slope of regression of logged values   

        Dim intersection As Double 'dummy; Needed for the regression sub  

 

        Dim bindata(CInt(lVect(nofData) - lVect(0)) + 1) As Integer 

        '                             Containing the number of lengths in each  

        '                             lengthe interval 

        Dim xData(maxBin) As Double  'Complementary cumulative number of lengths 

        Dim yData(maxBin) As Double  'lengths 

 

        'Calculate the number of possible bins of cumulative lengths  

        nofBinData = CInt(lVect(nofData) - lVect(0)) + 1 

 

        'initiate variables 

        minZ = 10000000000.0 

        maxZ = -10000000000.0 

        For i = 0 To nofBinData 

            bindata(i) = 0 

        Next 

 

        'Find maximum an minimum values of the line in the hVect [ Step 2 ] 

        For i = 0 To nofData - 1 

            If hVect(i) < minZ Then minZ = hVect(i) 

            If hVect(i) > maxZ Then maxZ = hVect(i) 

        Next 

 

        'Calculate the distance between the investigated zero lines [ Step 3 ] 

        lineDist = (maxZ - minZ) / nofLines 

 

        'initiate the level of the investigated zero line, (half of the line  

        'distance above the maximum value 

        currLevel = maxZ + lineDist / 2 

 

        'run through all investigation lines. [ Step 4 ] 

        For i = 1 To nofLines 

 

            'calculate the level of the current investigation line  

            currLevel = currLevel - lineDist 

 

            'initiate the boolean that flag the for the first time the fractal  

            'line intersects the current zero line 

            firstIsAlreadyHit = False 

 

            'Go through all, but the first, points in the vector containing  

            'the z values 

            For j = 1 To nofData 

 

                'check if the 2 investigated verices of the fractal line are on  

                'different sides of the current investigated zero line. If so 

                ' calculate the intersection coordinate  

                If (hVect(j - 1) - currLevel) * (hVect(j) - currLevel) < 0 Then 

 

                    'if the first intesection is already hit then calculate the  

                    'next intersection and save the length, otherwise calculate  

                    'the coordinate of the first intersection 

                    If firstIsAlreadyHit Then 

 

                        'Interpolate the current intesection 

                        currCoord = (lVect(j) - lVect(j - 1)) / _ 

                                    (hVect(j) - hVect(j - 1)) * _ 

                                    (currLevel - hVect(j - 1)) + lVect(j - 1) 

 

                        'Calculate the length between the 2 intersections 

                        length = currCoord - lastCoord 

 

                        'calculate which bin that should be added 1 hit  

                        'The output is supposed to be the Probability that the  

                        'length is larger than a specified length, hence lengths  

                        'in the interval 0 to 1 unit shall be stored in bin 0 

                        lengthInterval = Truncate(length) 
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                        'Add 1 hit to the correct bin 

                        bindata(lengthInterval) = bindata(lengthInterval) + 1 

 

                        'update the current coordinate to be the last known  

                        'intersection coordinate 

                        lastCoord = currCoord 

 

                    Else 

                        'Change the boolean 

                        firstIsAlreadyHit = True 

 

                        'Interpolate the current intesection and save it as the 

                        'last known intersection coordinate 

                        lastCoord = (lVect(j) - lVect(j - 1)) / _ 

                                    (hVect(j) - hVect(j - 1)) * _ 

                                    (currLevel - hVect(j - 1)) + lVect(j - 1) 

                    End If 

 

                End If 

            Next 

 

        Next 

 

        'Make bin data be cumulative [ Step 5 ] 

        For i = nofBinData To 1 Step -1 

            bindata(i - 1) = bindata(i) + bindata(i - 1) 

        Next 

 

        'generate Step sizes like [  1   2   4   8  16  32  64 ...], 

        '                         [  2   4   8  16  32  64 128 ...], 

        '                         [  4   8  16  32  64 128 256 ...], 

        '                         [  8  16  32  64 128 256 512 ...] etc 

        'The way to find the apropriate distance is to take the distance between 

        '2 points of the trace, and divide it by the number of bins between  

        'them. Therafter the value is converted into base 2 log-value, which is  

        'rounded to nearest integer. Raising 2 to this number will give the  

        'minimum distance in the 2^n form  

        xData(1) = 2 ^ (CInt(Log((lVect(nofData) - lVect(0)) / _ 

                                                   nofData) / Log(2))) 

 

        'Create the other length values from the first 

        For i = 2 To maxBin 

            xData(i) = xData(i - 1) * 2 

        Next 

 

        'Save the cumulative values in log space that corresponds to the lengths 

        'saved in xData, which should be used in the regression analysis 

        For i = 1 To maxBin 

            yData(i) = Log10(bindata(xData(i))) 

        Next 

 

        'Transform the length data to log space 

        For i = 1 To maxBin 

            xData(i) = Log10(xData(i)) 

        Next 

 

        'Calculate the slope from linear regression analysis [ Step 6 ] 

        Call regression_analysis_of_line(xData, yData, minBin, maxBin, slope, _ 

                                         intersection, errorMessage) 

 

        'Calculate the Hurst exponent according to eq. 5-6 

        H = slope + 1 

 

errorTrap: 

 

    End Sub 

5.4 Box Count 

The Box Count method is visually intuitive and easy to implement, though it is time- or memory-

consuming depending on the implementation. The method can use an arbitrary amount of arbitrarily 

spaced vertices, which makes it very flexible. However, it can only estimate the Hurst exponent and 

not any asperity measure. It is also sensitive to the number of vertices of the traces. 
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5.4.1 Theory 

The Box Count method uses the relationship between the number of boxes visited by the fractal line 

as a function of the number of divisions of the box. The method can be seen as a form of divider 

method, and will give incorrect results if erroneously implemented, as in e.g. Li and Huang (2015), 

and Chen et al. (2012) among others, see section 7. However, the implementation described in 

Malinverno (1990) will work on self-affine lines.  

 

For a self-affine fractal line there is no such thing as a square or circle (Mandelbrot 1985). Instead 

the Box Count method has to find the minima and maxima of the trace length and asperities creating 

the “box”. Using the maximum and minimum in each direction, the box is divided at the middle to 

create smaller sub-boxes. For each division, the number of boxes that contain any part of the trace is 

recorded. The relationship between the number of divisions and the number of boxes visited by the 

trace can be expressed as: 

 

  sN n n  eq. 5-8 

   

where:  

N(n) = number of boxes visited by the fractal line 

n = number of boxes along the axes 

s = slope of the regression line in logarithmic space.  

 

The relationship between the slope and the Hurst exponent is: 
 

2H s   eq. 5-9 

   

where: 

H = Hurst exponent 

s = slope of the line in logarithmic space.   

 

Plotting eq. 5-8 in logarithmic space will render a straight line where the slope equals 2 – H. The 

inference of the Hurst exponent is, hence, done using linear regression in logarithmic space. 

 

The method suffers from edge effects in both the lower end and upper end. In the lower end, the first 

division will always result in three or four boxes being visited by the fractal line, which is a very low 

resolution, but might influence the inference of the Hurst exponent. In the upper end, the lack of 

resolution of the trace will render an underestimate of boxes visited by the trace and hence tend to 

overestimate the Hurst exponent. Hence, to avoid those edge effects the results from the first division 

should be omitted, together with the results from divisions that result in box sizes close to the 

resolution of the trace, especially for traces with low Hurst exponent. 

5.4.2 Worked example 

The fractal line shown in Figure 5-1 is used in this example of how to infer the Hurst exponent using 

the Box Count method. The method has the following steps: 

 

1. Extract the height data coordinates. 

2. Find the maximum and minimum length and height values to construct the “box”. 

3. Divide the box in the middle of each direction into four equally large sub-boxes and count 

the number of sub-boxes visited by the trace. 

4. Continue to divide the box into smaller and smaller sub-boxes and count the number of sub-

boxes visited by the trace. 

5. Do a linear regression in logarithmic space of number of sub-boxes visited by the line as a 

function of number of sub-boxes along one side of the box. 

6. Use the slope to calculate the Hurst exponent. 
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The extracted coordinates are listed in Table 5-1 and recapitulated in Table 5-10. From the data, the 

maximum and minimum vertices are 0 and 16, whilst the maximum and minimum height is 0.443 

and –0.596, respectively. Hence the unity box is 16 width units wide and 1.039 height units high. 

The four divisions of the unity box are shown in Figure 5-7. 

 
Table 5-10. The vertices together with the lateral and vertical extensions 

vertex height  Extension 

0 0.315  Max vertex 16 
1 0.166  Min vertex 0 
2 0.260  Max height 0.443 
3 0.033  Min height -0.596 

4 -0.241    
5 -0.596    
6 -0.450    
7 -0.204    
8 -0.281    
9 0.125    

10 0.105    
11 -0.069    
12 -0.041    
13 0.171    
14 0.333    
15 0.443    
16 0.315    

 

  

  
Figure 5-7. Number of boxes visited by the trace (shaded) using different numbers of divisions. 

Upper left) One division, 4/4 boxes visited. Upper right) Two divisions, 9/16 boxes visited.  Lower 

left) Three divisions, 25/64 boxes visited. Lower right) Four divisions, 60/256 boxes visited. 

 

The number of boxes visited for each stage of division is listed in Table 5-11 and plotted in Figure 

5-8. From these data, the slope is inferred to be 1.4 and, hence, according to eq. 5-9, the Hurst 

exponent is 0.6. 

 
Table 5-11. Number of divisions, d, number of boxes along the axes, n, and number of boxes visited by 
the fractal line, N(n) 

d n  N(n) 

1 2 4 
2 4 9 
3 8 25 
4 16 60 
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Figure 5-8. Number of boxes visited by the trace using different numbers of boxes along each side of 

the main box. 

 

5.4.3 Code 

    '=========================================================================== 

    '===                 BoxCounting_evaluation_variable_dx                  === 

    '=========================================================================== 

    '===  Routine calculating the fractal dimension of a line using box      === 

    '===  counting method described in:                                      === 

    '===  Malinverno 1990, A simple method to estimate the fractal           === 

    '===  dimension of a self-affine series. Geophys Res Lett 1990;          === 

    '===  17:1953–6                                                          === 

    '=========================================================================== 

    '===                                                                     === 

    '===     Point is considered as inside if it     +---+                   === 

    '===     is on the left or bottom boundary       •---+  dot is inside    === 

    '===                                                                     === 

    '===     Point is considered as outside if       +---•                   === 

    '===     it is on the right or top boundary      +---+  dot is outside   === 

    '===                                                                     === 

    '===                                                                     === 

    '===     Division level 1; r = 0.5, 1/r = 2                              === 

    '===     +---------------+------•--------+                               === 

    '===     |               |     • • •     |                               === 

    '===     |               |  • •   • •    |                               === 

    '===     |               | • •       •   •                               === 

    '===     +---------------+•-----------•-•+                               === 

    '===     |    ••         •             • |                               === 

    '===     • • •  •••     •|               |                               === 

    '===     |• •      •• •• |               |  3 squares intersected with   === 

    '===     +-----------•---+---------------+  lines between vertices       === 

    '===                                                                     === 

    '===                                                                     === 

    '===     Division level 2; r = 0.25, 1/r = 4                             === 

    '===     +-------+-------+------•+-------+                               === 

    '===     |       |       |     • • •     |                               === 

    '===     +-------+-------+--•-•--+•-•----|                               === 

    '===     |       |       | • •   |   •   •                               === 

    '===     +-------+-------+•------+----•-•+                               === 

    '===     |    •• |       •       |     • |                               === 

    '===     •-•-•--•••-----•+-------+-------|                               === 

    '===     |• •    | •• •• |       |       |  10 squares intersected with  === 

    '===     +-------+---•---+-------+-------+  lines between vertices       === 

    '===                                                                     === 
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    '===                                                                     === 

    '===     Division level 3; r = 0.125, 1/r = 8                            === 

    '===     +---+---+---+---+---+--•+---+---+                               === 

    '===     +---+---|---+---|---+-•-•-•-+---|                               === 

    '===     +---+---+---+---+--•+•--+•-•+---|                               === 

    '===     |---+---|---+---|-•-•---|---•---•                               === 

    '===     +---+---+---+---+•--+---+---+•-•+                               === 

    '===     |---+••-|---+---•---+---|---+-•-|                               === 

    '===     •-•-•--•••-----•+---+---+---+---|                               === 

    '===     |•-•+---|-••+••-|---+---|---+---|  20 squares intersected with  === 

    '===     +---+---+---•---+---+---+---+---+  lines between vertices       === 

    '===                                                                     === 

    '===                                                                     === 

    '===      N                                                              === 

    '===      |                                          y=1.07x^1.47        === 

    '===   32 +                                      ,·'                     === 

    '===      |                                  ,·'                         === 

    '===   16 +                     (10)     ,·'  X         D = 1.47         === 

    '===      |                       X  ,·'    (20)        H = 2 - D        === 

    '===    8 +                      ,·'                    H = 0.53         === 

    '===      |                  ,·'                                         === 

    '===    4 +          (3) ,·'                                             === 

    '===      |          ,X'                                                 === 

    '===    2 +      ,·'                                                     === 

    '===      |  ,·'                                                         === 

    '===    1 X-----------+-----------+-----------+------> 1/r               === 

    '===      1           2           4           8                          === 

    '===                                                                     === 

    '===                                                                     === 

    '===      • = Vertices                                                   === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===     |   |   •   |   |   • • |   |                                   === 

    '===    -+---+---+---+---+-•-+---•-•-+-                                  === 

    '===     |   |   |   |   |   |   |   |                                   === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===     | • |   | • •   •   |   |   •                                   === 

    '===    -•---+-•-+---+-•-+---+---+---+-                                  === 

    '===     |   •   |   |   |   |   |   |                                   === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===                                                                     === 

    '===      O = Boxes that are hit with lines between vertices             === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===     |   | O | O |   | O | O | O |                                   === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===     |   | O | O |   | O |   | O |                                   === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===     | O | O | O | O | O |   | O | C                                 === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===     | O | O |   |   |   |   |   |                                   === 

    '===    -+---+---+---+---+---+---+---+-                                  === 

    '===                                                                     === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  xVect(0 to N-1) = vector containing x coordinates of vertices      === 

    '===  yVect(0 to N-1) = vector containing y coordinates of vertices      === 

    '===  N               = the number of data in the data vectors           === 

    '===  minBin          = index for the lowest bin to regard               === 

    '===  maxBin          = index for the highest bin to regard              === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  H            = Hurst exponent                                      === 

    '===  errorMessage = string containing possible errorMessage             === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson, March 3 2016                           === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub BoxCounting_evaluation_variable_dx(ByRef xVect() As Double, _ 

                                           ByRef yVect() As Double, _ 

                                           ByRef N As Integer, _ 

                                           ByRef minBin As Integer, _ 

                                           ByRef maxBin As Integer, _ 

                                           ByRef H As Double, _ 

                                           ByRef errorMessage As String) 

 

        Dim i, j, k As Integer     'counters 

        Dim nofBoxes As Integer    'number of boxes hit  

        Dim currNofData As Integer 'number of boxes along one side of tyhe box 
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        Dim x1Index As Integer     'x index for the start point of the current  

        '                           investigated line segment of the trace 

        Dim y1Index As Integer     'y index for the start point of the current 

        '                           investigated line segment of the trace 

        Dim x2Index As Integer     'x index for the end point of the curent 

        '                           investigated line segment of the trace 

        Dim y2Index As Integer     'y index for the end point of the curent  

        '                           investigated line segment of the trace 

        Dim xCIndex As Integer     'x index used in the yCIndex vector 

        Dim currXindex As Integer  'current x index when the invetsigated line  

        '                           segment strech over multiple x indices 

 

        Dim x1 As Double           'relative x coordinate for start point 

        Dim y1 As Double           'relative y coordinate for start point 

        Dim x2 As Double           'relative x coordinate for end point 

        Dim y2 As Double           'relative y coordinate for end point 

        Dim xMin As Double         'minimum x value in the data, i.e. xVect(0) 

        Dim yMin As Double         'minimum y value in the data 

        Dim yMax As Double         'maximum y value in the data 

        Dim xLength As Double      'extension in x direction of the data   

        Dim yLength As Double      'extension in y direction of the data 

        Dim intersection As Double 'dummy; needed when using regression sub 

        Dim slope As Double        'slope of the regression in log space 

 

        Dim hitMatrix(CInt(2 ^ maxBin), CInt(2 ^ maxBin)) As Boolean 

        '                           matrix of which cells that contain the line. 

        Dim yCIndex(N) As Integer            'y indices where the investigated  

        '                                     line is crossing the vertical  

        '                                     division lines 

        Dim nVect(Log(N) / Log(2)) As Double 'vector containing number of boxes  

        '                                     hit in each division level. 

        Dim dVect(maxBin) As Double          'Vector containing the 1/r values 

 

        'Get minimum value in x directions 

        xMin = xVect(0) 

 

        'Calculate length in x directions [ Step 2 ] 

        xLength = xVect(N - 1) - xMin 

 

        'Find the max and min values in y direction 

        yMin = 1.0E+20 

        yMax = -1.0E+20 

        For i = 0 To N - 1 

            If yVect(i) < yMin Then 

                yMin = yVect(i) 

            End If 

            If yVect(i) > yMax Then 

                yMax = yVect(i) 

            End If 

        Next 

 

        'Calculate length in y directions  [ Step 2 ] 

        yLength = yMax - yMin 

 

        '--- Find the boxes hit by the line on the finest grid --- 

 

        'Initiate the hitMatrix to be full of false and yCIndex to be -1 

        For j = 0 To 2 ^ maxBin 

            yCIndex(j) = -1 

            For k = 0 To 2 ^ maxBin 

                hitMatrix(j, k) = False 

            Next 

        Next 

 

        'Initiate the counter of used boxes 

        nofBoxes = 0 

 

        'Go through the vertices of the line 

        For j = 0 To N - 2  'I use minus two, because I look at the current  

            '                point, and 1 forward 

 

            'Calculate the indecies in the hitMatrix of the first point 

            x1 = (xVect(j) - xMin) / xLength 

            y1 = (yVect(j) - yMin) / yLength 

            x1Index = Int(x1 * 2 ^ maxBin) 

            y1Index = Int(y1 * 2 ^ maxBin) 

 

            'Calculate the indecies in the hitMatrix of the second point 

            x2 = (xVect(j + 1) - xMin) / xLength 
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            y2 = (yVect(j + 1) - yMin) / yLength 

            x2Index = Int(x2 * 2 ^ maxBin) 

            y2Index = Int(y2 * 2 ^ maxBin) 

 

            'The uppermost point will be on the top border and resulting in a  

            'hit in a box outside the possible. Hence, Lower the index by one to 

            'force it being inside. This will happen exactly 1 time. 

            If y1Index = 2 ^ maxBin Then 

                y1Index = y1Index - 1 

            End If 

            If y2Index = 2 ^ maxBin Then 

                y2Index = y2Index - 1 

            End If 

            If x2Index = 2 ^ maxBin Then 

                x2Index = x2Index - 1 

            End If 

 

            If x2Index > x1Index Then 

 

                'interpolate the y value where the line segment between the   

                'vertices crosses the vertical line of the adjacent boxes 

                For xCIndex = x1Index + 1 To x2Index 

                    yCIndex(xCIndex) = Int(((y2 - y1) / (x2 - x1) * _ 

                                       ((xCIndex / 2 ^ maxBin) - x1) + y1) * _ 

                                       2 ^ maxBin) 

                Next xCIndex 

 

                'Depending on the order of the indecies the loop has to be done  

                'in different orders.  

                'If y index 2 is larger go from index1 to index2... 

                If y2Index > y1Index Then 

 

                    currXindex = x1Index 

 

                    For k = y1Index To y2Index 

                        'Check if the box isn't marked 

                        If hitMatrix(currXindex, k) = False Then 

 

                            'Mark the box as used 

                            hitMatrix(currXindex, k) = True 

 

                            'Add one to the number of unique hit boxes 

                            nofBoxes = nofBoxes + 1 

                        End If 

 

                        'Is the investigation line crossing a vertical  

                        'division line? 

                        If k = yCIndex(currXindex + 1) Then 

 

                            'Add 1 to the x index and check the new cell  

                            currXindex = currXindex + 1 

 

                            'Check if the box isn't marked 

                            If hitMatrix(currXindex, k) = False Then 

 

                                'Mark the box as used 

                                hitMatrix(currXindex, k) = True 

 

                                'Add one to the number of unique hit boxes 

                                nofBoxes = nofBoxes + 1 

                            End If 

                        End If 

                    Next 

 

                ElseIf y1Index > y2Index Then  '...else go from index 2 to 1  

 

                    currXindex = x1Index 

 

                    For k = y1Index To y2Index Step -1 

 

                        'Check if the box isn't marked 

                        If hitMatrix(currXindex, k) = False Then 

 

                            'Mark the box as used 

                            hitMatrix(currXindex, k) = True 

 

                            'Add one to the number of unique hit boxes 

                            nofBoxes = nofBoxes + 1 

                        End If 
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                        'Is the investigation line crossing a vertical  

                        'division line? 

                        If k = yCIndex(currXindex + 1) Then 

 

                            'Add 1 to the x index and check the new cell  

                            currXindex = currXindex + 1 

 

                            'Check if the box isn't marked 

                            If hitMatrix(currXindex, k) = False Then 

 

                                'Mark the box as used 

                                hitMatrix(currXindex, k) = True 

 

                                'Add one to the number of unique hit boxes 

                                nofBoxes = nofBoxes + 1 

                            End If 

                        End If 

                    Next 

 

                Else 'y1index == y2index == yCindex 

 

                    For k = x1Index To x2Index 

 

                        'Check if the box isn't marked 

                        If hitMatrix(k, y1Index) = False Then 

 

                            'Mark the box as used 

                            hitMatrix(k, y1Index) = True 

 

                            'Add one to the number of unique hit boxes 

                            nofBoxes = nofBoxes + 1 

 

                        End If 

                    Next 

                End If 

 

            Else   'x2index == x1index 

 

                'Depending on the order of the indecies the loop has to be done  

                'in different orders.  

                'If y index 2 is larger go from index1 to index2 

                If y2Index > y1Index Then 

 

                    'go through all boxes between the lower and upper indices  

                    For k = y1Index To y2Index 

 

                        'Check if the box isn't marked 

                        If hitMatrix(x1Index, k) = False Then 

 

                            'Mark the box as used 

                            hitMatrix(x1Index, k) = True 

 

                            'Add one to the number of unique hit boxes 

                            nofBoxes = nofBoxes + 1 

 

                        End If 

                    Next 

 

                    'If y index 1 is larger go from index2 to index1 

                ElseIf y1Index > y2Index Then 

 

                    'go through all boxes between the lower and upper indices  

                    For k = y2Index To y1Index 

 

                        'Check if the box isn't marked 

                        If hitMatrix(x1Index, k) = False Then 

 

                            'Mark the box as used 

                            hitMatrix(x1Index, k) = True 

 

                            'Add one to the number of unique hit boxes 

                            nofBoxes = nofBoxes + 1 

 

                        End If 

                    Next 

 

                    'If y indecies are equal 

                Else 
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                    'Check if the box isn't marked 

                    If hitMatrix(x1Index, y1Index) = False Then 

 

                        'Mark the box as used 

                        hitMatrix(x1Index, y1Index) = True 

 

                        'Add one to the number of unique hit boxes 

                        nofBoxes = nofBoxes + 1 

 

                    End If 

                End If 

            End If    'if x2index > x1index 

        Next j        'Go through the vertices of the line 

 

        'Save the number of boxes intersected by a line 

        nVect(maxBin) = nofBoxes 

 

        'Coarsen the grid and mark the cells that are intersected by checking if  

        'any of the four cells in the finer grid are intersected by the trace 

 

        ' Hit cells in finest grid 

        '     0   1   2   3   4   5   6   7 

        ' --+---+---+---+---+---+---+---+---+-- 

        ' 0 |   |   |   |   |   |   |   | X | 

        ' --+---+---+---+---+---+---+---+---+-- 

        ' 1 |   |   |   |   |   |   | X | X | 

        ' --+---+---+---+---+---+---+---+---+-- 

        ' 2 |   |   |   | X | X | X | X |   | 

        ' --+---+---+---+---+---+---+---+---+-- 

        ' 3 |   |   |   | X |   | X | X |   | 

        ' --+---+---+---+---+---+---+---+---+--  

        ' 4 |   |   |   | X |   |   |   |   | 

        ' --+---+---+---+---+---+---+---+---+--  

        ' 5 |   | X | X | X |   |   |   |   | 

        ' --+---+---+---+---+---+---+---+---+--  

        ' 6 |   | X | X |   |   |   |   |   | 

        ' --+---+---+---+---+---+---+---+---+--  

        ' 7 | X | X |   |   |   |   |   |   | 

        ' --+---+---+---+---+---+---+---+---+--  

        ' 

        ' Hit cells on the coarser grid 

        '       0       1       2       3 

        ' --+-------+-------+-------+-------+--  

        '   |       |       |       |  \ /  | 

        ' 0 |       |       |       |   X   | 

        '   |       |       |       |  / \  | 

        ' --+-------+-------+-------+-------+--  

        '   |       |  \ /  |  \ /  |  \ /  | 

        ' 1 |       |   X   |   X   |   X   | 

        '   |       |  / \  |  / \  |  / \  | 

        ' --+-------+-------+-------+-------+--  

        '   |  \ /  |  \ /  |       |       | 

        ' 2 |   X   |   X   |       |       | 

        '   |  / \  |  / \  |       |       | 

        ' --+-------+-------+-------+-------+--  

        '   |  \ /  |  \ /  |       |       | 

        ' 3 |   X   |   X   |       |       | 

        '   |  / \  |  / \  |       |       | 

        ' --+-------+-------+-------+-------+--  

        ' 

        ' Hit cells on an even coarser grid 

        '            0               1 

        ' --+---------------+---------------+-- 

        '   |    \     /    |    \     /    | 

        '   |     \   /     |     \   /     | 

        '   |      \ /      |      \ /      | 

        ' 0 |       X       |       X       | 

        '   |      / \      |      / \      | 

        '   |     /   \     |     /   \     | 

        '   |    /     \    |    /     \    | 

        ' --+---------------+---------------+-- 

        '   |    \     /    |               | 

        '   |     \   /     |               | 

        '   |      \ /      |               | 

        ' 1 |       X       |               | 

        '   |      / \      |               | 

        '   |     /   \     |               | 

        '   |    /     \    |               | 

        ' --+---------------+---------------+-- 
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        'Go through the data from the finest to the coarsest grid 

        For i = maxBin - 1 To minBin Step -1 

 

            'Calculate the number of cells on each side of the lattice 

            currNofData = 2 ^ i 

 

            'Initiate the counter 

            nofBoxes = 0 

 

            'Go through the cells in the coarser grid...   

            For j = 0 To currNofData - 1 

                For k = 0 To currNofData - 1 

 

                    '...and see if they should be marked as intersected because  

                    'any of the four sub-cells of the finer grid is hit 

                    If hitMatrix(j * 2, k * 2) Or _ 

                       hitMatrix(j * 2 + 1, k * 2) Or _ 

                       hitMatrix(j * 2, k * 2 + 1) Or _ 

                       hitMatrix(j * 2 + 1, k * 2 + 1) Then 

 

                        'mark the cell in the coarser grid as hit 

                        hitMatrix(j, k) = True 

 

                        'Add one to the number of boxes hit 

                        nofBoxes = nofBoxes + 1 

 

                    Else 

 

                        'mark the cell in the coarser grid as no hit 

                        hitMatrix(j, k) = False 

                    End If 

                Next k 

            Next j 

 

            'Save the number of boxes intersected by the line 

            nVect(i) = nofBoxes 

        Next i 

 

        'Construct vector containing the sidelengths of the cells  

        For i = minBin To maxBin 

            dVect(i) = 2 ^ i 

        Next 

 

        'Log the data 

        For i = minBin To maxBin 

            dVect(i) = Log10(dVect(i)) 

            nVect(i) = Log10(nVect(i)) 

        Next 

 

        'Calculate the slope from all used Bins [ Step 5 ] 

        Call regression_analysis_of_line(dVect, nVect, minBin, maxBin, slope, _ 

                                         intersection, errorMessage) 

 

        'Calculate the Hurst exponent eq. 5-8 

        H = 2 - slope 

 

    End Sub 
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6 The flaw in the original divider method 

The original divider method is very easy to implement and to evaluate. However, it is only 

applicable to self-similar fractals, and not to self-affine fractals (Den Outer et al. 1995; Odling 1994). 

The method can give reasonable results if the trace is scaled so that the difference between maximum 

and minimum height equals the horizontal length of the trace (Kulatilake et al. 2006). This 

transformation equals the creation of the unity “box” of the box counting method. 

 

The results from the method are shown using a synthetic trace of 1024 vertices and resolution 

0.1 mm with H = 0.600 and σδh(1 mm) = 0.246 mm. The vertices of the trace are provided in Online 

Resource 2 and visualised in Figure 6-1. Evaluating the trace with the method developed in the main 

paper renders JRC equal to 11.7. 

 

 
Figure 6-1. Trace used for evaluation by the divider method. 

 

Following the original divider method, the length of the trace is measured using 0.1 mm steps in the 

length direction. Thereafter, the length of the trace is measured using steps of 0.2 mm, 0.4 mm, 

0.8 mm etc. in the length direction. The trace length is then plotted as a function of the step length in 

logarithmic space and the slope is used to infer the Hurst exponent, Figure 6-2. The Hurst exponent 

relates to the slope as H = 1 + slope. Using the example trace in Figure 6-1, the slope is –0.023 and 

hence H = 0.977. This number is within the range reported in many studies (e.g. Turk et al. 1987; 

Wakabayashi and Fukushige 1992; Bae et al. 2011) using the original divider method erroneously on 

self-affine traces. 

 

 
Figure 6-2. Trace length as a function of horizontal step length using the original divider method. 

 

However, following the reasoning in Kulatilake et al. (2006), it is possible to achieve reasonable 

results using a modified version of the divider method. By exaggerating the height of the trace the 
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slope will increase and, hence, the Hurst exponent will decrease, Figure 6-3. The more exaggerated 

the heights, the lower H, although the decrease in H proceeds very slow after a certain exaggeration 

value, Figure 6-4. However, too large exaggeration will not be correct either. Instead, following the 

reasoning in Malinverno (1990), the exaggeration should be so large that the difference between the 

maximum and minimum height equals the horizontal length of the trace, i.e. so that a square is 

obtained. This corresponds to creating “the box” using the Box Count method. Using the trace in 

Figure 6-1, the exaggeration factor should be 27, Figure 6-5. Evaluating this trace using the divider 

method results in slope –0.371 and hence H = 0.629, which is close to the generated Hgen = 0.6.     

 

 
Figure 6-3. Trace length as a function of horizontal step length using different exaggerations of the 

heights. 

 

 
Figure 6-4. Evaluated H as a function of exaggeration of height values. 
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Figure 6-5. The heights in Figure 6-1, multiplied by 27 to make the maximum height difference 

equal the horizontal length of the trace. 
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7 Erroneous implementation of the Box Count method 

The Box Count method is correctly implemented in section 5.4. However, there are many examples 

in the literature (e.g. Chen et al. 2012; Li and Huang 2015; among others) where the method has 

been erroneously implemented. The erroneous method is shown below. It should not be used for 

evaluating fractal lines. 

 

The fractal line, with Hgen = 0.6, shown in Figure 6-1 is used in this example. Instead of the correct 

creation of the box, by finding the lowest and highest values in both the length and height directions, 

the box is created by making the height equal the length as shown in Figure 7-1 This means that only 

the boxes that are adjacent to the abscissa will be visited by the fractal line as long as the size of the 

boxes is larger than the maximum or minimum height. Hence, the number of visited boxes will 

approximately double for each new division into sub-boxes. This implies that H will be evaluated 

speciously as close to 0. 

 

  

  
Figure 7-1. Number of boxes visited by the trace (shaded) using different number of divisions in 

erroneous implementation of the Box Count method. Upper left) One division, 4/4 boxes visited. 

Upper right) Two divisions, 6/16 boxes visited.  Lower left) Three divisions, 11/64 boxes visited. 

Lower right) Four divisions, 19/256 boxes visited. 
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The boxes visited by the example fractal line are shown in Figure 7-1 for the first four divisions and 

the numbers of boxes visited for the first seven divisions are listed in Table 7-1. As expected, the 

number of boxes visited almost doubles for each division, resulting in a slope in log space of 0.9, see 

Figure 7-2. According to eq. 5-9 this corresponds to H = 1.1, which should be compared against the 

generated Hurst exponent, Hgen, = 0.6. 

 
Table 7-1. Number of divisions, d, number of boxes along the axes, n, and number of boxes visited by 
the fractal line, N(n), in erroneous implementation of the Box Count method 

d n  N(n) 

1 2 4 
2 4 6 
3 8 11 
4 16 19 
5 32 38 
6 64 73 
7 128 142 

 

 
Figure 7-2. Number of boxes visited by the trace using different number of boxes along each side of 

the main box in erroneous implementation of the Box Count method. 

 

Using this erroneous implementation, the speciously evaluated H will be more sensitive to the scale 

parameter σδh(Δx) than the Hurst exponent, since a larger σδh(Δx) will make the fractal line visit 

more boxes that are not adjacent to the abscissa. The method is also sensitive to the vertical location 

of the trace, giving the highest H if it is centred around the abscissa. By lowering the trace in the 

example above by 1.8 mm, only the boxes that are below the abscissa will be visited. Hence, the first 

four divisions will result in a doubling of the number of boxes visited for each division, i.e. N(n) = 2, 

4, 8, 16. This equals a slope of 1 and hence H = 1. The usage of this erroneous implementation will 

severely overestimate the Hurst exponent and hence underestimate the fractal dimension.   

  



52 
 

8 The problem with the Z2 method 

Another widely used method to evaluate JRC from traces is using a relationship to the Z2 method 

defined by Myers (1962). The measure Z2 is simply the root mean square of the first derivative of the 

traces. Its discrete form, according to Tse and Cruden (1979) is described by: 
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  eq. 8-1 

   

where: 

Z2 = root mean square of the first derivative of the trace 

N = number of intervals 

Δx = step length 

hi = height value at node i.   

 

Tse and Cruden (1979) developed a relationship between JRC and Z2 for traces with Δx = 1.27 mm 

that is described by 

 

232.2 32.47 logJRC Z    eq. 8-2 

 

To investigate the method, the trace in Figure 6-1 is used. The trace has 1024 vertices equally spaced 

in the horizontal direction, i.e. Δx = 0.1 mm and inferred JRC 11.7. To investigate the effect the 

resolution has on the resulting JRC, six different resolutions are used below (2 mm, 1.5 mm, 

1.3 mm,1 mm, 0.5 mm and 0.1 mm), while a 10.2 mm piece of 0.1 mm resolution is used to evaluate 

the effect the length has on the resulting JRC. The results are shown in Table 8-1. 

 
Table 8-1. Z2 and Joint roughness coefficient (JRC) values of the trace in Figure 6-1 obtained using 
different resolutions and number of vertices 

Δx (mm) 2 1.5 1.3 1 0.5 0.1 0.1 

N 51 68 78 102 204 1024 102 
Z2 0.158 0.202 0.207 0.222 0.308 0.539 0.506 
JRC 6.2 9.7 10.0 11.0 15.6 23.5 22.6 

 

As can be seen, the Z2 method gives an estimated JRC value in the range of the inferred one, I.e. 10.0 

compared to 11.7, when the resolution is 1.3 mm, (i.e close to the distance, 1.27 mm, that Tse and 

Cruden (1979) used developing the relationship). When the resolution is 1 mm the estimated JRC is 

closer, 11.0 compared to 11.7. However, on doubling the resolution, i.e. Δx = 0.5 mm, Z2 increases, 

resulting in a higher estimated JRC, 15.6. On further increasing the resolution, to Δx = 0.1 mm, the 

method results in even higher Z2 and the estimated JRC = 23.5, Table 8-1. In the same way the 

interpreted JRC values will decrease if the resolution gets coarser, for example 1.5 or 2 mm. This is 

expected due to the nature of fractal lines, i.e. the higher the resolution, the longer the total trace 

length and the steeper the angled parts of the trace. These results are in accordance with the findings 

by Xu and Vayssade (1991) who invented relationships between Z2 and JRC for sampling intervals 

of 1 mm, 0.5 mm and 0.25 mm. 

 

The number of vertices used in the evaluation is of minor importance. Using a short trace, 10.2 mm, 

with high resolution, Δx = 0.1 mm, gives an estimated JRC value of 22.6. This is in the same range 

as for the long trace with same resolution, i.e. JRC = 23.5.  

 

The conclusion is that the correlation between Z2 and JRC developed by Tse and Cruden (1979) only 

is valid when the resolution is 1.27 mm and the error will be larger the larger the deviation is from 

the demanded resolution. This implies that the traces have to be sampled using 1.27 mm distance or 

at distances that are fractions of 1.27 mm. If the resolution is coarser, as may be the case for long 

traces, new empirical relationships have to be developed for each resolution. 
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To test the inference of JRC using the Z2 method in a systematic way, the nine synthetic traces in 

Stigsson (2018) are analysed using a resolution of 1.3 mm. The JRC values of these traces were 

visually inferred by an ensemble of eleven geologists in Stigsson (2018) and are here compared with 

the JRC values calculated using Eq. 8-1 and 8-2. There is a good correlation between the visually 

interpreted JRC values and the JRC values inferred using the Z2 method for values larger than about 

5, see Figure 8-1. However, for the lower range, JRC less than about 5, there is an indication that the 

conversion from Z2 to infer JRC using Eq. 8-2 will give unrealistic results.  

 

 
Figure 8-1. Inferred JRC values calculated from Z2 as a function of the visually interpreted JRC 

values from an ensemble of geologists. The middle bar shows median value while whiskers show the 

25 and 75 percentile. 
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9 Sensitivity study of number of realisations needed 

A study to evaluate the number of generated traces needed to get stable measures, average and 

standard deviation, of H and σδh(1p), is carried out here for two cases, H = 0.975 and H = 0.600, 

both with σδh(1p) = 0.2. Results from H = 0.975 are shown in Figure 9-1 and results from H = 0.600 

are shown in Figure 9-2. 

 

In the study, 4096 traces of 65536 vertices are generated. From these traces, sub-traces with 8192 or 

64 vertices are extracted and analysed. For each full trace (65536 vertices), there are 15 sub-traces of 

8192 vertices and 2047 sub-traces of 64 vertices. The differences in arithmetic mean and standard 

deviation compared with the arithmetic mean and standard deviation of the 4096 traces are shown as 

a function of number of traces in Figure 9-1 and Figure 9-2. As can be seen, both the arithmetic 

mean and standard deviation values stabilise after 128 to 256 generated traces for all methods except 

for Zero set/Korcak, which needs 512 traces to be stable. Hence, it should be enough to generate 512 

traces. However, 1024 realisations are carried out here to have some margin to the minimum 

required.  

 

  

  

  
Figure 9-1. Number of generations of full traces needed to get stable arithmetic mean and standard 

deviation of H and σδh(1p), using different evaluation methods, when H = 0.975. 
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Figure 9-2. Number of generations of full traces needed to get stable arithmetic mean and standard 

deviation of H and σδh(1p), using different evaluation methods, when H = 0.600.  
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10 Parameters affecting evaluation of the fractal 
parameters H and σδh(ΔL) 

10.1 Hurst exponent, H 

The arithmetic mean and variance of the inferred Hurst exponent, H, may depend on the generated H 

itself and the number of vertices used during the evaluation, but not on the magnification of the 

asperities. The effect that the generated H will have on the evaluated H is analysed here by 

comparing equally long traces with different generated H. The sizes of the effects will differ due to 

the lengths of the evaluated traces and, hence, different lengths of traces are extracted. The full 

traces, 65536 vertices, are analysed together with two sub-samples of 1024 vertices and 64 vertices 

of the full trace. As a reference, another set of 1024 vertices traces are extracted, but from traces 

generated with 4096 vertices only. The results are presented in Figure 10-1.  

 

The value of H obtained using the FFT method is right on the 1:1 slope, without any variance for the 

full trace, Figure 10-1a. This is expected, since that evaluation method is exactly the inverse of the 

generation method. However, if H is evaluated using a sub-trace, Figure 10-1b to d, the picture 

becomes different. As expected, the average of the FFT method is still on the 1:1 slope, but there is a 

variance around the mean. As the number of vertices decreases the variance increases, cf. Figure 

10-1a to c. The variance is only dependent on the number of vertices used in the analysis, and not the 

ratio between generated and analysed number of vertices, cf. Figure 10-1b and d. 

 

The value of H obtained by RMS-COR using the full 65536 vertices trace shows good agreement 

with the generated H up to 0.900. Above 0.900, the evaluated H deviates downward and at H = 1.000 

the deviation is about 0.050, Figure 10-1a. However, the variance around the mean is insignificant 

for any H evaluating the full trace. As the evaluated trace gets shorter, the evaluated mean H 

obtained using the RMS-COR method deviates more from the 1:1 slope and the variance becomes 

larger, Figure 10-1b and c. The evaluated mean H and variance is not dependent on the number of 

vertices of the generated trace, but only the number of evaluated vertices, cf. Figure 10-1b and d. 

 

The Zero set/Korcak evaluation method of H using the full 65536 vertices trace also shows good 

agreement with the generated H for the lower values of H, but for the higher values the method 

under-predicts the generated value by up to 0.1, Figure 10-1a. As the traces gets shorter, the method 

results in larger under-predictions, and more so for the higher Hurst exponents, Figure 10-1a to c. 

The variance is almost independent on H, but very dependent on the trace length, being 0.01 for the 

full trace and around 0.25 for the 64 vertices trace. The Zero set/Korcak method is not dependent on 

the ratio between the number of generated vertices and the evaluated number, but is dependent on the 

absolute number of vertices only, cf. Figure 10-1b and d. 

 

Already for the full trace, 65536 vertices, the evaluated mean H using the Box Count method 

deviates from the 1:1 slope of H. The method over-predicts the generated H by approximately 0.05 

for the lower generated H and under-predicts it by the same amount for the higher generated H, 

Figure 10-1a. As the number of evaluated vertices decreases, the deviation from the generated H 

increases, resulting in a flatter relationship between generated and evaluated H, Figure 10-1a to c. 

The variance increases with decreasing number of vertices, but is independent of H. As for the other 

three methods, the mean and also the variance are not dependent on the ratio between absolute 

number of vertices generated and evaluated, but only on the number of vertices evaluated, cf. Figure 

10-1b and d. 
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Figure 10-1. The mean value of the Hurst exponent, as markers, and the standard deviation, as 

whiskers, of the evaluated H depending on the generated H. a) All 65536 vertices used, b) 1024 

vertices used of 65536 available, c) 64 vertices used of 65536 available and d) 1024 vertices used of 

4096 available. 

 

As indicated in Figure 10-1 and discussed above, the evaluated Hurst exponent is not only affected 

by the value of H itself, but also by the number of vertices used in the evaluation. The number of 

vertices can be reduced in two ways; a short piece with full resolution can be extracted for analysis, 

or the full length of the trace can be used, but only extracting every i:th vertex. Figure 10-2 shows 

the effect that decreasing the number of vertices will have on the evaluated H. The effect is shown 

using two different generated H values, 0.975 and 0.600. On reducing the number of vertices used in 

evaluation of the mean H, the deviation from the generated H will increase, independent of how the 

number of vertices is decreased. However, the deviation is slightly larger with larger H, i.e. the 

deviation is larger for the trace where the generated H is 0.975, compare Figure 10-2a with b and c 

with d. The variance does not seem to be affected by the absolute number of H, but by the method 

used to reduce the number of vertices, compare the standard deviations in Figure 10-2a with c and 

b with d. As expected, shorter traces with high resolution will have larger uncertainty than longer 

traces with low resolution given the same number of vertices. 
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Figure 10-2. The mean, as markers, and standard deviation, as whiskers, of the evaluated H as a 

function of the number of vertices analysed. In the upper row the number of vertices is changed by 

altering the length of the trace, whilst in the lower row the number of vertices is changed by skipping 

in-between vertices. In the left column, the generated H = 0.975; in the right column, H = 0.600. 

 

Since all four methods are suitable for self-affine traces, the evaluated H does not depend on the 

generated σδh(1p), as expected, see Figure 10-3. However, when using e.g. the divider method the 

Hurst exponent would decrease as σδh(1p) increases, see section 6. 
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Figure 10-3. The mean, as markers, and standard deviation, as whiskers, of the evaluated H as a 

function of σδh(1p) for a trace of 1024 vertices. 

10.2 Asperity measure, σδh(ΔL) 

When measuring a fracture trace, there is always a trade-off between high resolution of a small piece 

or low resolution of the full trace. Measuring a full fracture trace with high resolution will always 

give the correct σδh(ΔL) for ΔL equal to the resolution and up. However, in the case where only a 

fraction of the fracture trace is measured, σδh(1p) will usually be underestimated compared with the 

true value due to the de-trending of the short evaluated trace. The larger the H of the investigated 

trace, or the fewer investigated vertices, the larger the underestimation of σδh(1p), Figure 10-4a and 

b. However, the inferred σδh(1p) does not have to be underestimated by the investigation method 

used and regression performed, see e.g. Figure 10-4a where the RMS-COR method overestimates the 

generated σδh(1p) by ~0.01 mm down to traces that are 1/1024 of the original trace length. Still, the 

inferred values will decrease as H increases and the trace contains fewer vertices. The difference 

between the two methods may be explained by the linear regression using RMS-COR and by the fact 

that the calculation of σδh(ΔL) is not exact using eq. 5-2. 

 

In the case where the full trace is measured, but at a low resolution, the evaluated σδh(ΔL) will scale 

as eq. 5-3, where ΔL will be the length between measured vertices, Figure 10-4c and d. Hence the 

σδh(ΔL) will increase as the resolution decreases, due to larger distance between the evaluated 

vertices. The theoretical and evaluated values of σδh(ΔL) will almost coincide when H = 0.600 for 

both the FFT and RMS-COR method, Figure 10-4c. However, the evaluated σδh(ΔL) values will be 

underestimated as the resolution becomes coarser, i.e. ΔL gets larger, for the case where H  = 0.975, 

Figure 10-4d. The slope of the inferred values in Figure 10-4d is only 0.91, compared with the 

theoretical 0.975, indicating that the Inverse FFT method is not capable of generating correct traces 

as H approaches 1. As a consequence, the FFT method will overestimate H for traces where H is 

close to 1. 

 

Estimating σδh(ΔL) for ΔL smaller than the distance between the measured points is delicate. Due to 

the need for extrapolation of a power function with an uncertain value of the exponent, H, the 

estimated σδh(ΔL) will be highly uncertain, Figure 10-4e and f. For a trace with H = 0.600, the error 

is less than 20% if using more than 256 vertices of the 65536 available, but then rapidly increases. 

Yet, for the case where H = 0.975, the error increases quite rapidly due to the trouble in correctly 

inferring H when close to 1.  
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Figure 10-4.  Evaluated standard deviation of the asperity difference, σδh(Δx), using two different 

generated H, 0.600 in left column and 0.975 in right column. a) and b) The effect of using full 

resolution, 1p, but changing the length of the evaluated trace. c) and d) The effect of changing the 

resolution, i.e. the length between the evaluated vertices is changed, but full length of the trace is 

kept. e) and f) The effect of changing the resolution using full length trace, but extrapolating the 

result below the distance between the evaluated vertices. 
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As indicated in Figure 10-4a and b, the Hurst parameter will affect the possibility to infer σδh(1p). In 

Figure 10-5 σδh(1p) is plotted against the Hurst parameter for two traces of different lengths, one of 

1024 vertices and one of 64 vertices. As the Hurst parameter increases the inferred σδh(1p) 

decreases, together with an increase in the variance; the shorter the trace, the larger the effect. 

 

  
Figure 10-5.  Evaluated standard deviation of the asperity difference, σδh(1p) as a function of 

generated H, using two different lengths of the traces. a) 1024 vertices and b) 64 vertices. 
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11 Manual digitalisation of traces 

In order to evaluate the type traces described in Barton and Choubey (1977) and Bakhtar and Barton 

(1984), they need to be digitised. This can be done using algorithms, as e.g. Jang et al. (2014), or 

manually. An algorithm-based digitalisation is preferable due to its repeatability, but when such code 

is lacking manual digitalisation may be used. However, it is wise to execute multiple digitalisations 

of the traces in order to estimate the uncertainty in the results. For the study in the main paper the 

type traces in Barton and Choubey (1977) and Bakhtar and Barton (1984) were manually digitised 

twice, once from left to right and once from right to left by the authors. The difference between the 

two digitalisations was judged to be so small that no further digitalisation was needed. 

 

The procedure to digitise the ten plus seven traces was as follows: Figure 8 in Barton and Choubey 

(1977) and Figure 5 in Bakhtar and Barton (1984) were imported into the software Surfer 12 by 

Golden software (Golden Software 2018). The judged breakpoints of the traces were digitised in 

paper space and exported as text files in the bln format. The scaling factor between real space and 

paper space was inferred by digitising the rulers at the bottom of each diagram. The traces were then 

scaled to real space and translated to begin at the origin of the coordinate system. The scaled and 

translated traces are shown in Online Resource 2, attached to the main paper. Two of the evaluation 

methods need the vertices to be at equal distances in the x direction, and hence the traces were 

sampled every 0.1 mm for the ~100 mm traces in Barton and Choubey (1977) and every 1 mm for 

the ~1000 mm traces in Bakhtar and Barton (1984).  

 

During the analysis of the fractal parameters, the traces are automatically rectified using either 

Deming regression or simple de-trend to together with vertical adjustment to avoid artificial high 

power low frequency biases.  
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Appendix A 

Derivation of σδh(1p) for a single sine wave  

A discretised single sine wave can be described as 

 

  sin 2
x

y x A f
N


 

   
 

 eq. A-1 

 

Where 

A = amplitude 

f = frequency 

N = number of vertices of the full wave  

x = vertex number 

 

The difference in height between 2 adjacent vertices is described by 

 

     xyxyph  11  eq. A-2 

 

The standard deviation of all height differences between 2 adjacent vertices is  

 

       22
111 phEphEph    eq. A-3 

 

Where 

σδh(1p) = standard deviation of height differences between 2 adjacent vertices 

E(δh(1p)
2
) = Expected value of the squared differences 

E(δh(1p)) = Expected value of the differences 

 

The expected value of the squared differences is simply the mean of the squared differences, which 

can be expressed as the summation 
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In the same way the expected value of the differences is the mean of the differences: 
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Expanding the summation in eq. A-5 and recalling that y(N) = y(0) gives 
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This is also intuitive since the summation is done over full waves. Hence eq. A-3 can be reduced to 

 

    2
11 phEph    eq. A-7 

 

Inserting eq. A-1 and eq. A-2 into eq. A-7 gives 
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eq. A-8 

 

Squaring both sides of eq. A-8 and rearranging gives  
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Expanding the right side of eq. A-9 gives 
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Performing the summation over multiples of whole waves the equality  
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holds, and hence eq. A-10 can be written as 
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The right summation in eq. A-12 can be expanded and developed according to eq. A-13 to eq. A-18 
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Using the relationship 
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eq. A-13 can be expanded to 
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And further expanded by moving the last sine term inside the parenthesis 
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Using the relationship 
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eq. A-16 can be written as 
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 eq. A-18 

 

Inserting eq. A-18 into eq. A-12 gives 
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eq. A-19 

 

Recalling that the last term in the last summation is a constant and the summation of values over a 

multiple of full waves is zero the last summation is zero. Hence eq. A-19 can be reduced to 
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  eq. A-20 

 

Since the second term is constant and the first can be transformed using the relationship 

 

   22sin 1 cos 2a a   eq. A-21 

 

eq. A-20 can be rewritten as 
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  eq. A-22 

 

Again the second term in the summation is zero for any summation over a multiple of full waves and 

the firs term sums to N, hence eq. A-22 simply becomes 
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eq. A-23 

 

Using the relationship in eq. A-21, eq. A-23 can be further reduced to 
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eq. A-24 

 

Substituting the right part in eq. A-9 with the results in eq. A-24 
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And hence 
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Appendix B 

Extra codes  

    '=========================================================================== 

    '===                            calcAmplConst                            === 

    '=========================================================================== 

    '===  Function that Calculate the amplitude of the sine wave for the     === 

    '===  length frequency 1 according to equation 4-10                      === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  sdh1p = the desired standard deviation of the differences in       === 

    '===          height between adjacent points on the fractal line         === 

    '===  size  = the number of data points of the fractal line              === 

    '===  hurst = the Hurst exponent of the fractal line                     === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson 16 March 2017                           === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Function calcAmplConst(ByVal sdh1p As Double, _ 

                           ByVal size As Integer, _ 

                           ByVal hurst As Double) 

 

        Dim k As Integer 

        Dim sig2Sum As Double 

        Dim pi As Double 

 

        'initiate variables 

        sig2Sum = 0 

        pi = Atan(1) * 4 

 

        'Do the summation of all squared strandard deviations  

        For k = 1 To size / 2 - 1 

 

            'Calculate the squared standard deviation and add to the existing  

            'sum 

            sig2Sum = sig2Sum + (k ^ (-(hurst + 0.5)) * Sin(pi * k / size)) ^ 2 

 

        Next 

 

        calcAmplConst = size / (2 * 2 ^ 0.5) * sdh1p / sig2Sum ^ 0.5 

 

    End Function 

 

 

 

  



70 
 

    '=========================================================================== 

    '===                      mean_and_stdev_from_sums                       === 

    '=========================================================================== 

    '===  Routine calculating the mean and standard deviation using the sum  === 

    '===  of the observed values and the sum of the squared observed         === 

    '===  values. The standard deviation of a population of values can be    === 

    '===  calculated according to                                            === 

    '===                                                                     === 

    '===  σ =(E|x^2|-E|x|^2)^0.5,                                            === 

    '===                                                                     === 

    '===  see e.g. https://en.wikipedia.org/wiki/Standard_deviation          === 

    '===  To transform a standard deviation of a population to a standard    === 

    '===  deviation of a sample simply multiply by (N / (N - 1))^0.5         === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  xSum       = sum of the values                                     === 

    '===  x2Sum      = sum of the squared values                             === 

    '===  nofData    = number of values                                      === 

    '===  population = shall the standard deviation be calculated using an   === 

    '===               entire population, TRUE, or from a sample from the    === 

    '===               population, FALSE                                     === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  mean         = mean of the data                                    === 

    '===  stdev        = standard deviation of the data                      === 

    '===  errorMessage = string containing possible errorMessage             === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson, March 31 2017                          === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub mean_and_stdev_from_sums(ByVal xSum As Double, _ 

                                 ByVal x2sum As Double, _ 

                                 ByVal nofData As Integer, _ 

                                 ByVal population As Boolean, _ 

                                 ByRef mean As Double, _ 

                                 ByRef stdev As Double, _ 

                                 ByRef errorMessage As String) 

 

        Dim x2mean As Double      'the mean of the squared values 

        Dim subtraction As Double 'the subtraction under the square root 

 

        'Calculate mean 

        mean = xSum / nofData 

 

        'Calculate average square value 

        x2mean = x2sum / nofData 

 

        'Calculate the subtraction in the square root 

        subtraction = x2mean - mean * mean 

 

        'calculate the standard deviation of the population 

        stdev = (subtraction) ^ 0.5 

 

        'If sample population is desired correct the value accordingly 

        If Not population Then 

 

            'calculate the standard deviation of a sample 

            stdev = stdev * (nofData / (nofData - 1)) ^ 0.5 

 

        End If 

 

errorTrap: 

 

    End Sub 
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    '=========================================================================== 

    '===                     regression_analysis_of_line                     === 

    '=========================================================================== 

    '===  Routine calculating the slope and intersection in arithmetic       === 

    '===  space using regression-analysis. The algorithm uses all of the     === 

    '===  accesible values to calculate the slope and intersection of the    === 

    '===  regression line. The R-value is also calculated for quality        === 

    '===  check. Observe that the data vectors should start at position 1    === 

    '===  and not 0                                                          === 

    '=========================================================================== 

    '====                                                                   ==== 

    '===  Input:                                                             === 

    '===  xData(1 to nofData) = the x data vector in arithmetic space        === 

    '===  yData(1 to nofData) = the y data vector in arithmetic space        === 

    '===  minNdx              = lowest vector index to regard                === 

    '===  maxNdx              = highest vector index to regard               === 

    '====                                                                   ==== 

    '===  Output:                                                            === 

    '===  slope               = the slope of the curve in log space          === 

    '===  intersection        = the intersection of the line with the y      === 

    '===                        axis in log space                            === 

    '===  errorMessage        = string containing possible errorMessage      === 

    '====                                                                   ==== 

    '=========================================================================== 

    '===  Written by Martin Stigsson, February 26 2016                       === 

    '===  Please, report errors or improvements to: martin.stigsson@skb.se   === 

    '=========================================================================== 

    Sub regression_analysis_of_line(ByRef xData() As Double, _ 

                                    ByRef yData() As Double, _ 

                                    ByRef minNdx As Integer, _ 

                                    ByRef maxNdx As Integer, _ 

                                    ByRef slope As Double, _ 

                                    ByRef intersection As Double, _ 

                                    ByRef errormessage As String) 

 

        Dim i As Integer            'Counter 

        Dim nofNdxsUsed As Integer  'number of indices that are used in the  

        '                            regression analysis 

 

        Dim Sx As Double            'Sum of x-values  

        Dim Sy As Double            'Sum of y-values  

        Dim Sxx As Double           'Sum of x^2 values  

        Dim Syy As Double           'Sum of y^2-values  

        Dim Sxy As Double           'Sum of x·y-values  

        'Dim r As Double             'correlation coefficient  

 

        'initiate the sums to be used in the regression analysis 

        Sx = 0 

        Sy = 0 

        Sxx = 0 

        Syy = 0 

        Sxy = 0 

 

        'Calculate sums   

        For i = minNdx To maxNdx 

            Sx = Sx + xData(i) 

            Sy = Sy + yData(i) 

            Sxx = Sxx + xData(i) ^ 2 

            Syy = Syy + yData(i) ^ 2 

            Sxy = Sxy + xData(i) * yData(i) 

        Next 

 

        'Calculate number of data that was used  

        nofNdxsUsed = maxNdx - minNdx + 1 

 

        'Calculate correlation coefficient 

        'r = (nofBinsUsed * Sxy - Sx * Sy) / ((nofBinsUsed * Sxx - Sx ^ 2) * _ 

        '    (nofBinsUsed * Syy - Sy ^ 2)) ^ 0.5 

 

        'Calculate slope by regresion, reference e.g.  

        'http://en.wikipedia.org/wiki/Simple_linear_regression 

        slope = (nofNdxsUsed * Sxy - Sx * Sy) / (nofNdxsUsed * Sxx - Sx ^ 2) 

 

        'Calculate intercept 

        intersection = Sy / nofNdxsUsed - slope * Sx / nofNdxsUsed 

 

errorTrap: 

    End Sub 


