Skip to main content

2014 | OriginalPaper | Buchkapitel

Retracted: Nanomechanics: Physics Between Engineering and Chemistry

verfasst von : Boris I. Yakobson, Traian Dumitrică

Erschienen in: Trends in Nanoscale Mechanics

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanics at nanometer scale involves physical factors often entirely different from the familiar concepts in macroscopic mechanical engineering (elastic moduli, contact forces, friction etc.). These new features are often of chemical nature: intermolecular forces, thermal fluctuations, chemical bonds. The general aspects and issues of nanomechanics are illustrated by an overview of the properties of nanotubes: linear elastic parameters, nonlinear elastic instabilities and buckling, inelastic relaxation, yield strength and fracture mechanisms, and their kinetic theory. Atomistic scenarios of coalescence-welding and the role of non- covalent forces (supra-molecular interactions) between the nanotubes are also discussed due to their significance in potential applications. A discussion of theoretical and computational work is supplemented by brief summaries of experimental results, for the entire range of the deformation amplitudes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Editor’s notes: B. Yakobson and his colleagues were among the first to perform theoretical modeling of carbon nanotubes, i.e.,
1993/94—R.S. Ruoff and J. Tersoff team at IBM has done first theoretical modeling of carbon nanotubes and carbon nanotube crystals.
1996—M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson have carried out first experimental testing of carbon nanotubes with the atomic force microscope (AFM).
1996—B.I. Yakobson, C.J. Brabec and J. Bernholc have performed molecular dynamics (MD) simulation of the axial buckling and twisting of carbon nanotubes. They have shown the shell-like behavior of carbon nanotubes.
1997—C.M. Lieber and his team at Harvard University have done similar experimental testing of vibrating carbon nanotubes.
 
2
Editor’s notes in words of Leonardo da Vinci [about his notes on science]: “… I believe that before I am at the end of this I shall have to repeat [some of] the same things; and therefore, O reader, blame me not, because the subjects are many…” and it is important to encourage the reader.
 
3
Editor’s notes: “Movement is created by heat and cold.” Leonardo da Vinci, Philosophy, p. 79, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).
 
4
Editor’s notes: “Therefore O students study mathematics and do not build without foundations.” Leonardo da Vinci, Philosophy, p. 82, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).
 
5
Editor’s notes: “He who blames the supreme certainty of mathematics feeds on confusion, and will never impose silence upon the contradictions of the sophistical sciences, which occasion a perpetual clamor.” Leonardo da Vinci, Philosophy, p. 83, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906). .
 
6
Editor’s notes: “Let no one read me who is not mathematician in my beginnings.” Leonardo da Vinci, Philosophy, p. 85, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).
 
7
Editor’s notes: “Inequality is the cause of all local movements.” Leonardo da Vinci, Aphorisms, p. 89, in The Notebooks of Leonardo da Vinci (edited by E. MacCurdy, Konecky and Konecky printing, Duckworth and Co., London, 1906).
 
Literatur
1.
Zurück zum Zitat B.I. Yakobson, Morphology and rate of fracture in chemical decomposition of solids. Phys. Rev. Lett. 67(12), 1590–1593 (1991)CrossRef B.I. Yakobson, Morphology and rate of fracture in chemical decomposition of solids. Phys. Rev. Lett. 67(12), 1590–1593 (1991)CrossRef
2.
Zurück zum Zitat B.I. Yakobson, Stress-promoted interface diffusion as a precursor of fracture. J. Chem. Phys. 99(9), 6923–6934 (1993)CrossRef B.I. Yakobson, Stress-promoted interface diffusion as a precursor of fracture. J. Chem. Phys. 99(9), 6923–6934 (1993)CrossRef
3.
Zurück zum Zitat S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
4.
Zurück zum Zitat R.B. Phillips, Crystals, Defects and Microstructures. (Cambridge University Press, Cambridge, 2001), p. 780 R.B. Phillips, Crystals, Defects and Microstructures. (Cambridge University Press, Cambridge, 2001), p. 780
5.
Zurück zum Zitat T. Hertel, R.E. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58(20), 13870–13873 (1998)CrossRef T. Hertel, R.E. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58(20), 13870–13873 (1998)CrossRef
6.
Zurück zum Zitat B.I. Yakobson, R.E. Smalley, Fullerene nanotubes: C1,000,000 and beyond. Am. Scien. 85(4), 324–337 (1997) B.I. Yakobson, R.E. Smalley, Fullerene nanotubes: C1,000,000 and beyond. Am. Scien. 85(4), 324–337 (1997)
7.
Zurück zum Zitat B.I. Yakobson, P. Avouris, in Mechanical Properties of Carbon Nanotubes, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes (Springer, Berlin, 2001), pp. 287–327 B.I. Yakobson, P. Avouris, in Mechanical Properties of Carbon Nanotubes, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes (Springer, Berlin, 2001), pp. 287–327
9.
Zurück zum Zitat F. Ercolessi, M. Parinello, E. Tosatti, Simulation of gold in the glue model. Philos. Mag. A 58(1), 213–226 (1988)CrossRef F. Ercolessi, M. Parinello, E. Tosatti, Simulation of gold in the glue model. Philos. Mag. A 58(1), 213–226 (1988)CrossRef
10.
Zurück zum Zitat M.S. Daw, Model of metallic cohesion—the embedded-atom method. Phys. Rev. B 39(11), 7441–7452 (1989)CrossRef M.S. Daw, Model of metallic cohesion—the embedded-atom method. Phys. Rev. B 39(11), 7441–7452 (1989)CrossRef
11.
Zurück zum Zitat M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition-metals. Philos. Mag. A 50(1), 45–55 (1984)CrossRef M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition-metals. Philos. Mag. A 50(1), 45–55 (1984)CrossRef
12.
Zurück zum Zitat J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988)CrossRef J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988)CrossRef
13.
Zurück zum Zitat D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42(15), 9458–9471 (1990)CrossRef D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42(15), 9458–9471 (1990)CrossRef
14.
Zurück zum Zitat O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 61(6), 3877–3888 (2000) O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 61(6), 3877–3888 (2000)
15.
Zurück zum Zitat R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)CrossRef R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)CrossRef
16.
Zurück zum Zitat O.F. Sankey, R.E. Allen, Atomic forces from electronic energies via the Hellmann-Feynman theorem, with application to semiconductor (110) surface relaxation. Phys. Rev. B 33(10), 7164–7171 (1986); O.F. Sankey, D.J. Niklewski, Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 40(6), 3979–3995 (1989); C.M. Goringe, D.R. Bowler, E. Hernandez, Tight-binding modeling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997) O.F. Sankey, R.E. Allen, Atomic forces from electronic energies via the Hellmann-Feynman theorem, with application to semiconductor (110) surface relaxation. Phys. Rev. B 33(10), 7164–7171 (1986); O.F. Sankey, D.J. Niklewski, Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 40(6), 3979–3995 (1989); C.M. Goringe, D.R. Bowler, E. Hernandez, Tight-binding modeling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997)
17.
Zurück zum Zitat S. Nose, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984); W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985) S. Nose, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984); W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)
18.
Zurück zum Zitat R.E. Allen, Electron-ion dynamics: a technique for simulating both electronic transitions and ionic motion in molecules and materials. Phys. Rev. B 50(24), 18629–18632 (1994); R.E. Allen, T. Dumitrica, B. Torralva, in Electronic and Structural Response of Materials to Fast Intense Laser Pulses, ed. by K.T. Tsen, Ultrafast Physical Processes in Semiconductors (Academic, New York, 2001), pp. 315–388 R.E. Allen, Electron-ion dynamics: a technique for simulating both electronic transitions and ionic motion in molecules and materials. Phys. Rev. B 50(24), 18629–18632 (1994); R.E. Allen, T. Dumitrica, B. Torralva, in Electronic and Structural Response of Materials to Fast Intense Laser Pulses, ed. by K.T. Tsen, Ultrafast Physical Processes in Semiconductors (Academic, New York, 2001), pp. 315–388
19.
Zurück zum Zitat K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN and C nano-shell elasticity by ab initio computations. Phys. Rev. B 64, 235406 (2001)CrossRef K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN and C nano-shell elasticity by ab initio computations. Phys. Rev. B 64, 235406 (2001)CrossRef
20.
Zurück zum Zitat M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRef M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRef
21.
Zurück zum Zitat E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRef E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRef
22.
Zurück zum Zitat P. Poncharal, Z.L. Wang, D. Ugarte, W.A. Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)CrossRef P. Poncharal, Z.L. Wang, D. Ugarte, W.A. Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)CrossRef
23.
Zurück zum Zitat B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond the linear response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)CrossRef B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond the linear response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)CrossRef
24.
Zurück zum Zitat B.I. Yakobson, C.J. Brabec, J. Bernholc, Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J. Comput. Aided Mater. Des. 3, 173–182 (1996)CrossRef B.I. Yakobson, C.J. Brabec, J. Bernholc, Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J. Comput. Aided Mater. Des. 3, 173–182 (1996)CrossRef
25.
Zurück zum Zitat A. Garg, J. Han, S.B. Sinnott, Interactions of carbon-nanotubule proximal probe tips with diamond and graphite. Phys. Rev. Lett. 81(11), 2260–2263 (1998)CrossRef A. Garg, J. Han, S.B. Sinnott, Interactions of carbon-nanotubule proximal probe tips with diamond and graphite. Phys. Rev. Lett. 81(11), 2260–2263 (1998)CrossRef
26.
Zurück zum Zitat D. Srivastava, M. Menon, K. Cho, Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83(15), 2973–2976 (1999)CrossRef D. Srivastava, M. Menon, K. Cho, Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83(15), 2973–2976 (1999)CrossRef
27.
Zurück zum Zitat B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-Chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)CrossRef B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-Chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)CrossRef
28.
Zurück zum Zitat R.S. Ruoff et al., Radial deformation of carbon nanotubes by van der Waals forces. Nature 364, 514–516 (1993)CrossRef R.S. Ruoff et al., Radial deformation of carbon nanotubes by van der Waals forces. Nature 364, 514–516 (1993)CrossRef
29.
Zurück zum Zitat N.G. Chopra et al., Fully collapsed carbon nanotubes. Nature 377, 135–138 (1995)CrossRef N.G. Chopra et al., Fully collapsed carbon nanotubes. Nature 377, 135–138 (1995)CrossRef
30.
Zurück zum Zitat J.F. Despres, E. Daguerre, K. Lafdi, Flexibility of graphene layers in carbon nanotubes. Carbon 33(1), 87–92 (1995)CrossRef J.F. Despres, E. Daguerre, K. Lafdi, Flexibility of graphene layers in carbon nanotubes. Carbon 33(1), 87–92 (1995)CrossRef
31.
Zurück zum Zitat S. Iijima, C.J. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089–2092 (1996)CrossRef S. Iijima, C.J. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089–2092 (1996)CrossRef
32.
Zurück zum Zitat B.I. Yakobson, in Dynamic Topology and Yield Strength of Carbon Nanotubes. Fullerenes, Electrochemical Society (ECS, Paris, Pennington, 1997) B.I. Yakobson, in Dynamic Topology and Yield Strength of Carbon Nanotubes. Fullerenes, Electrochemical Society (ECS, Paris, Pennington, 1997)
33.
Zurück zum Zitat R.E. Smalley, B.I. Yakobson, The future of the fullerenes. Solid State Commun. 107(11), 597–606 (1998)CrossRef R.E. Smalley, B.I. Yakobson, The future of the fullerenes. Solid State Commun. 107(11), 597–606 (1998)CrossRef
34.
Zurück zum Zitat J.Z. Liu, Q. Zheng, Q. Jiang, Effect of a rippling mode on resonances of carbon nanotubes. Phy. Rev. Lett. 86, 4843–4846 (2001)CrossRef J.Z. Liu, Q. Zheng, Q. Jiang, Effect of a rippling mode on resonances of carbon nanotubes. Phy. Rev. Lett. 86, 4843–4846 (2001)CrossRef
35.
Zurück zum Zitat B.I. Yakobson, Mechanical relaxation and ‘intramolecular plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72(8), 918–920 (1998)CrossRef B.I. Yakobson, Mechanical relaxation and ‘intramolecular plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72(8), 918–920 (1998)CrossRef
36.
Zurück zum Zitat B.I. Yakobson, Physical Property Modification of Nanotubes. U.S. Patent 6,280,677 B1, 2001 B.I. Yakobson, Physical Property Modification of Nanotubes. U.S. Patent 6,280,677 B1, 2001
37.
Zurück zum Zitat M.B. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277 (1998)CrossRef M.B. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277 (1998)CrossRef
38.
Zurück zum Zitat M.B. Nardelli, B.I. Yakobson, J. Bernholc, Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81(21), 4656–4659 (1998)CrossRef M.B. Nardelli, B.I. Yakobson, J. Bernholc, Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81(21), 4656–4659 (1998)CrossRef
39.
Zurück zum Zitat B.I. Yakobson, G. Samsonidze, G.G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38, 1675 (2000)CrossRef B.I. Yakobson, G. Samsonidze, G.G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38, 1675 (2000)CrossRef
40.
Zurück zum Zitat G.G. Samsonidze, G.G. Samsonidze, B.I. Yakobson, Kinetic theory of symmetry-dependent strength in carbon nanotubes. Phys. Rev. Lett. 88, 065501 (2002)CrossRef G.G. Samsonidze, G.G. Samsonidze, B.I. Yakobson, Kinetic theory of symmetry-dependent strength in carbon nanotubes. Phys. Rev. Lett. 88, 065501 (2002)CrossRef
41.
Zurück zum Zitat L. Chico et al., Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76(6), 971–974 (1996)CrossRef L. Chico et al., Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76(6), 971–974 (1996)CrossRef
42.
Zurück zum Zitat P.G. Collins et al., Nanotube nanodevice. Science 278, 100–103 (1997)CrossRef P.G. Collins et al., Nanotube nanodevice. Science 278, 100–103 (1997)CrossRef
43.
Zurück zum Zitat D. Tekleab, D.L. Carroll, G.G. Samsonidze, B.I. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube. Phys. Rev. B 64, 035419 (2001)CrossRef D. Tekleab, D.L. Carroll, G.G. Samsonidze, B.I. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube. Phys. Rev. B 64, 035419 (2001)CrossRef
44.
Zurück zum Zitat P. Zhang, Y. Huang, H. Gao, K.C. Hwang, Fracture nucleation in SWNT under tension: a continuum analysis incorporating interatomic potential. ASME Trans. J. Appl. Mech. (2002) (in press) P. Zhang, Y. Huang, H. Gao, K.C. Hwang, Fracture nucleation in SWNT under tension: a continuum analysis incorporating interatomic potential. ASME Trans. J. Appl. Mech. (2002) (in press)
45.
Zurück zum Zitat H. Bettinger, T. Dumitrica, G.E. Scuseria, B.I. Yakobson, Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B 65(Rapid Comm.), 041406 (2002) H. Bettinger, T. Dumitrica, G.E. Scuseria, B.I. Yakobson, Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B 65(Rapid Comm.), 041406 (2002)
46.
Zurück zum Zitat P. Zhang, V.H. Crespi, Plastic deformations of boron-nitride nanotubes: an unexpected weakness. Phys. Rev. B 62, 11050 (2000)CrossRef P. Zhang, V.H. Crespi, Plastic deformations of boron-nitride nanotubes: an unexpected weakness. Phys. Rev. B 62, 11050 (2000)CrossRef
47.
Zurück zum Zitat D. Srivastava, M. Menon, K.J. Cho, Anisotropic nanomechanics of boron nitride nanotubes: nanostructured “skin” effect. Phys. Rev. B 63, 195413 (2001)CrossRef D. Srivastava, M. Menon, K.J. Cho, Anisotropic nanomechanics of boron nitride nanotubes: nanostructured “skin” effect. Phys. Rev. B 63, 195413 (2001)CrossRef
48.
Zurück zum Zitat G.G. Samsonidze, G.G. Samsonidze, B.I. Yakobson, Energetics of Stone-Wales defects in deformations of monoatomic hexagonal layers. Comp. Mater. Sci. 23, 62–72 (2000)CrossRef G.G. Samsonidze, G.G. Samsonidze, B.I. Yakobson, Energetics of Stone-Wales defects in deformations of monoatomic hexagonal layers. Comp. Mater. Sci. 23, 62–72 (2000)CrossRef
49.
Zurück zum Zitat T. Dumitrica, H. Bettinger, B.I. Yakobson, Stone-Wales barriers and kinetic theory of strength for nanotubes. (2002) (in progress) T. Dumitrica, H. Bettinger, B.I. Yakobson, Stone-Wales barriers and kinetic theory of strength for nanotubes. (2002) (in progress)
50.
Zurück zum Zitat C. Wei, K.J. Cho, D. Srivastava, private communication. xxx.lanl.gov/abs/cond-mat/0202513 C. Wei, K.J. Cho, D. Srivastava, private communication. xxx.lanl.gov/abs/cond-mat/0202513
51.
Zurück zum Zitat Y. Zhao, B.I. Yakobson, R.E. Smalley, Dynamic topology of fullerene coalescence. Phys. Rev. Lett. 88, 185501 (2002)CrossRef Y. Zhao, B.I. Yakobson, R.E. Smalley, Dynamic topology of fullerene coalescence. Phys. Rev. Lett. 88, 185501 (2002)CrossRef
52.
Zurück zum Zitat P. Nikolaev et al., Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266, 422 (1997)CrossRef P. Nikolaev et al., Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266, 422 (1997)CrossRef
53.
Zurück zum Zitat M. Terrones et al., Coelescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000)CrossRef M. Terrones et al., Coelescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000)CrossRef
54.
Zurück zum Zitat R. Martel, H.R. Shea, P. Avouris, Rings of single-wall carbon nanotubes. Nature 398, 582 (1999)CrossRef R. Martel, H.R. Shea, P. Avouris, Rings of single-wall carbon nanotubes. Nature 398, 582 (1999)CrossRef
55.
Zurück zum Zitat B.I. Yakobson, L.S. Couchman. Persistence length and nanomechanics of random coils and bundles of nanotubes. (2002) (submitted) B.I. Yakobson, L.S. Couchman. Persistence length and nanomechanics of random coils and bundles of nanotubes. (2002) (submitted)
56.
Zurück zum Zitat V.M. Harik, Ranges of applicability of the continuum beam models in the mechanics of carbon nanotubes. Solid State Comm. 120, 331 (2001)CrossRef V.M. Harik, Ranges of applicability of the continuum beam models in the mechanics of carbon nanotubes. Solid State Comm. 120, 331 (2001)CrossRef
Metadaten
Titel
Retracted: Nanomechanics: Physics Between Engineering and Chemistry
verfasst von
Boris I. Yakobson
Traian Dumitrică
Copyright-Jahr
2014
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-017-9263-9_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.