Skip to main content

2020 | OriginalPaper | Buchkapitel

8. Reverse Cycle

verfasst von : Y. H. Venus Lun, S. L. Dennis Tung

Erschienen in: Heat Pumps for Sustainable Heating and Cooling

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter aims to examine the innovative development of multiple functions of heat pump with reverse cycle operations. The operating modes of the multiple functions heat pump include dehumidification, ventilation, space cooling and heating, and water heating. Benefits of using this innovative heat pump include: (1) comprehensive functions to provide indoor comfort climate, (2) remote condenser for both heat rejection and heat absorption, (3) integrate air source heat pump with air handling unit, (4) energy saving to use aerothermal for space heating and water heating, and (5) built-in control system. The development of heat pump system is examined. A case study on indoor swimming pool is also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Audah N, Ghaddah N, Ghali K (2011) Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs. Appl Energy 88:3726–3736CrossRef Audah N, Ghaddah N, Ghali K (2011) Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs. Appl Energy 88:3726–3736CrossRef
2.
Zurück zum Zitat Song M, Deng S, Pan D, Mao N (2014) An experimental study on the effects of downwards flowing of melted frost a vertical multi-circuit outdoor coil in an air source heat pump on defrosting performance during reverse cycle defrosting. Appl Therm Eng 67:258–265CrossRef Song M, Deng S, Pan D, Mao N (2014) An experimental study on the effects of downwards flowing of melted frost a vertical multi-circuit outdoor coil in an air source heat pump on defrosting performance during reverse cycle defrosting. Appl Therm Eng 67:258–265CrossRef
3.
Zurück zum Zitat Byun JS, Jeon CD, Jung JH, lee J (2006) The application of photo-coupler for frost detecting in air source heat pump. Int J Refrig 29(2):191–198CrossRef Byun JS, Jeon CD, Jung JH, lee J (2006) The application of photo-coupler for frost detecting in air source heat pump. Int J Refrig 29(2):191–198CrossRef
4.
Zurück zum Zitat Ochoa GEV, Castro SL, Narvaez MP (2014) Application of genetic algorithm to optimize the exergy performance of vapor compression refrigeration system. Contemp Eng Sci 11(25):1245–1252CrossRef Ochoa GEV, Castro SL, Narvaez MP (2014) Application of genetic algorithm to optimize the exergy performance of vapor compression refrigeration system. Contemp Eng Sci 11(25):1245–1252CrossRef
5.
Zurück zum Zitat Kumar S, Prevot M, Bougarel R (1989) Exergy analysis of compression refrigerant system. Heat Recovery Syst CHP 9(2):151–157CrossRef Kumar S, Prevot M, Bougarel R (1989) Exergy analysis of compression refrigerant system. Heat Recovery Syst CHP 9(2):151–157CrossRef
6.
Zurück zum Zitat Li YW, Wang RZ, Wu JY, Xu YX (2007) Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater. Appl Therm Eng 27:2585–2868 Li YW, Wang RZ, Wu JY, Xu YX (2007) Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater. Appl Therm Eng 27:2585–2868
7.
Zurück zum Zitat Feidt ML (1999) Thermodynamics and optimization of reverse cycle machine. In: Bejan A, Manut E (eds) Thermodynamic optimization of complex energy system, pp 385–401 Feidt ML (1999) Thermodynamics and optimization of reverse cycle machine. In: Bejan A, Manut E (eds) Thermodynamic optimization of complex energy system, pp 385–401
8.
Zurück zum Zitat Zhao X, Li JM, Riffat SB (2008) Numerical study of a novel counter-flow heat mass exchanger for dew point evaporative cooling. Appl Therm Eng 28(14/15):1942–1951CrossRef Zhao X, Li JM, Riffat SB (2008) Numerical study of a novel counter-flow heat mass exchanger for dew point evaporative cooling. Appl Therm Eng 28(14/15):1942–1951CrossRef
9.
Zurück zum Zitat Riangvilaiku B, Rumar S (2010) An experimental study of a novel dew point evaporative cooling system. Energy Build 42(5):637–644CrossRef Riangvilaiku B, Rumar S (2010) An experimental study of a novel dew point evaporative cooling system. Energy Build 42(5):637–644CrossRef
10.
Zurück zum Zitat Zhang LZ (2006) Energy performance of independent air dehumidification systems with energy recovery measures. Energy 31:1228–1242CrossRef Zhang LZ (2006) Energy performance of independent air dehumidification systems with energy recovery measures. Energy 31:1228–1242CrossRef
11.
Zurück zum Zitat Chua KJ, Chou SK, Yang WM (2010) Advances in heat pump system: a review. Appl Energy 87:3611–3624CrossRef Chua KJ, Chou SK, Yang WM (2010) Advances in heat pump system: a review. Appl Energy 87:3611–3624CrossRef
12.
Zurück zum Zitat Whaley DM, Saman WY, Alemu AT (2014) Integrated solar thermal system for water and space heating, dehumidification and cooling. Energy Procedia 57:2590–2599CrossRef Whaley DM, Saman WY, Alemu AT (2014) Integrated solar thermal system for water and space heating, dehumidification and cooling. Energy Procedia 57:2590–2599CrossRef
13.
Zurück zum Zitat Nunez T, Mittelbach W, Henning HM (2007) Development of an adsorption chiller and heat pump for domestic heating and air conditioning application. Appl Therm Eng 27:2205–2212CrossRef Nunez T, Mittelbach W, Henning HM (2007) Development of an adsorption chiller and heat pump for domestic heating and air conditioning application. Appl Therm Eng 27:2205–2212CrossRef
14.
Zurück zum Zitat Bagarella G, Lazzarin R, Noro M (2016) Annual simulation, energy and economic analysis of hybrid heat pump systems for residential buildings. Appl Therm Eng 99(25):485–494CrossRef Bagarella G, Lazzarin R, Noro M (2016) Annual simulation, energy and economic analysis of hybrid heat pump systems for residential buildings. Appl Therm Eng 99(25):485–494CrossRef
15.
Zurück zum Zitat Stene J (2005) Residential CO2 heat pump system for combined space heating and hot water system. Int J Refrig 28(8):1259–1265CrossRef Stene J (2005) Residential CO2 heat pump system for combined space heating and hot water system. Int J Refrig 28(8):1259–1265CrossRef
16.
Zurück zum Zitat Klein K, Huchtemann K, Muller D (2014) Numerical study on hybrid heat pump systems in existing buildings. Energy Build 69:193–201CrossRef Klein K, Huchtemann K, Muller D (2014) Numerical study on hybrid heat pump systems in existing buildings. Energy Build 69:193–201CrossRef
17.
Zurück zum Zitat Choi HJ, Kin BS, Knag D, Kim KC (2011) Defrosting method adopting dual hot gas bypass for an air to air heat pump. Appl Energy 88(12):4544–4555CrossRef Choi HJ, Kin BS, Knag D, Kim KC (2011) Defrosting method adopting dual hot gas bypass for an air to air heat pump. Appl Energy 88(12):4544–4555CrossRef
18.
Zurück zum Zitat Qu ML, Xia L, Deng SM, Jiang YQ (2012) An experimental investigation on reverse-cycle defrosting performance of air source heat pump using an electronic expansion valve. Appl Energy 97:327–333CrossRef Qu ML, Xia L, Deng SM, Jiang YQ (2012) An experimental investigation on reverse-cycle defrosting performance of air source heat pump using an electronic expansion valve. Appl Energy 97:327–333CrossRef
19.
Zurück zum Zitat Garimella SV, Singhal V (2004) Single-phase flow and heat transport and pump considerations in microchannel heat sink. Heat Transfer Eng 25(1):15–25CrossRef Garimella SV, Singhal V (2004) Single-phase flow and heat transport and pump considerations in microchannel heat sink. Heat Transfer Eng 25(1):15–25CrossRef
20.
Zurück zum Zitat Scanner B, Karytsas C, Medrinos D, Rybach L (2003) Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 32:579–588CrossRef Scanner B, Karytsas C, Medrinos D, Rybach L (2003) Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 32:579–588CrossRef
21.
Zurück zum Zitat Park C, Lee H, Hwang Y, Radermacher R (2015) Recent advances in vapor compression cycle technologies. Int J Refrig 60:118–134CrossRef Park C, Lee H, Hwang Y, Radermacher R (2015) Recent advances in vapor compression cycle technologies. Int J Refrig 60:118–134CrossRef
Metadaten
Titel
Reverse Cycle
verfasst von
Y. H. Venus Lun
S. L. Dennis Tung
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-31387-6_8