Skip to main content
Erschienen in: Journal of Materials Science 1/2019

11.09.2018 | Computation

Reversible hydrogen storage behaviors of Ti2N MXenes predicted by first-principles calculations

verfasst von: Yameng Li, Yongliang Guo, Wangao Chen, Zhaoyong Jiao, Shuhong Ma

Erschienen in: Journal of Materials Science | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hydrogen storage behaviors of the nitride-based MXenes Ti2N have been investigated by performing density functional calculations. It is observed that H2-molecules could be adsorbed on and desorbed from Ti2N monolayer with suitable adsorption strength under ambient conditions. Moreover, the stability and hydrogen adsorption behaviors are analyzed by computing adsorption energy, charge population and ab initio molecular dynamic simulations. The Kubas-type interaction of the H2-molecules with Ti2N monolayer is investigated according to the charge transfer and electronic projected density of states. Specifically, it is found that the maximum hydrogen storage capacity of Ti2N reaches up to 8.555 wt%, in which the reversible hydrogen storage capacity is of 3.422 wt%. In addition, OH-group-decorated Ti2N has great advantages on hydrogen storage, and the reversible hydrogen storage capacity is of 2.656 wt%. Therefore, the 2D Ti2N MXenes are expected for a potential candidate as reversible hydrogen storage materials under ambient conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRef Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRef
2.
Zurück zum Zitat Pukazhselvan D, Kumar V, Singh SK (2012) High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1:566–589CrossRef Pukazhselvan D, Kumar V, Singh SK (2012) High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1:566–589CrossRef
3.
Zurück zum Zitat Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172CrossRef Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172CrossRef
4.
Zurück zum Zitat Zhang X, Tang C, Jiang QG (2016) Electric field induced enhancement of hydrogen storage capacity for Li atom decorated graphene with Stone–Wales defects. Int J Hydrogen Energy 41:10776–10785CrossRef Zhang X, Tang C, Jiang QG (2016) Electric field induced enhancement of hydrogen storage capacity for Li atom decorated graphene with Stone–Wales defects. Int J Hydrogen Energy 41:10776–10785CrossRef
5.
Zurück zum Zitat Choudhary A, Malakkal L, Siripurapu RK, Szpunar B, Szpunar J (2016) First principles calculations of hydrogen storage on Cu and Pd-decorated graphene. Int J Hydrog Energy 41:17652–17656CrossRef Choudhary A, Malakkal L, Siripurapu RK, Szpunar B, Szpunar J (2016) First principles calculations of hydrogen storage on Cu and Pd-decorated graphene. Int J Hydrog Energy 41:17652–17656CrossRef
6.
Zurück zum Zitat Yuan LH, Chen YH, Kang L, Zhang CR, Wang DB, Wang CN, Zhang ML, Wu XJ (2017) First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene. Appl Surf Sci 399:463–468CrossRef Yuan LH, Chen YH, Kang L, Zhang CR, Wang DB, Wang CN, Zhang ML, Wu XJ (2017) First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene. Appl Surf Sci 399:463–468CrossRef
7.
Zurück zum Zitat Tranca DC, Seifert G (2016) A first-principles study of metal-decorated graphene nanoribbons for hydrogen storage. Z Phys Chem 230:791–808CrossRef Tranca DC, Seifert G (2016) A first-principles study of metal-decorated graphene nanoribbons for hydrogen storage. Z Phys Chem 230:791–808CrossRef
8.
Zurück zum Zitat Tang CM, Wan YM, Zhang X, Kang J, Zou JF, Cao J (2016) The hydrogen storage properties of the Ti decorated benzene-Ti-graphene sandwich-type structures. Int J Hydrog Energy 41:1035–1043CrossRef Tang CM, Wan YM, Zhang X, Kang J, Zou JF, Cao J (2016) The hydrogen storage properties of the Ti decorated benzene-Ti-graphene sandwich-type structures. Int J Hydrog Energy 41:1035–1043CrossRef
9.
Zurück zum Zitat Ganji MD, Emami SN, Khosravi A, Abbasi M (2015) Si-decorated graphene: a promising media for molecular hydrogen storage. Appl Surf Sci 332:105–111CrossRef Ganji MD, Emami SN, Khosravi A, Abbasi M (2015) Si-decorated graphene: a promising media for molecular hydrogen storage. Appl Surf Sci 332:105–111CrossRef
10.
Zurück zum Zitat Lebon A, Carrete J, Gallego LJ, Vega A (2015) Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. Int J Hydrog Energy 40:4960–4968CrossRef Lebon A, Carrete J, Gallego LJ, Vega A (2015) Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. Int J Hydrog Energy 40:4960–4968CrossRef
12.
Zurück zum Zitat Haldar S, Mukherjee S, Ahmed F, Singh CV (2017) A first principles study of hydrogen storage in lithium decorated defective phosphorene. Int J Hydrog Energy 42:23018–23027CrossRef Haldar S, Mukherjee S, Ahmed F, Singh CV (2017) A first principles study of hydrogen storage in lithium decorated defective phosphorene. Int J Hydrog Energy 42:23018–23027CrossRef
13.
Zurück zum Zitat Ma SH, Yuan DY, Wang YR, Jiao ZY (2018) Monolayer GeS as a potential candidate for NO2 gas sensors and capturers. J Mater Chem C 6:8082–8091CrossRef Ma SH, Yuan DY, Wang YR, Jiao ZY (2018) Monolayer GeS as a potential candidate for NO2 gas sensors and capturers. J Mater Chem C 6:8082–8091CrossRef
15.
Zurück zum Zitat Singh D, Gupta SK, Sonvane Y, Ahuja R (2017) High performance material for hydrogen storage: graphene like Si2BN solid. Int J Hydrog Energy 42:22942–22952CrossRef Singh D, Gupta SK, Sonvane Y, Ahuja R (2017) High performance material for hydrogen storage: graphene like Si2BN solid. Int J Hydrog Energy 42:22942–22952CrossRef
16.
Zurück zum Zitat Fu P, Wang J, Jia R, Bibi S, Eglitis RI, Zhang HX (2017) Theoretical study on hydrogen storage capacity of expanded h-BN systems. Comput Mater Sci 139:335–340CrossRef Fu P, Wang J, Jia R, Bibi S, Eglitis RI, Zhang HX (2017) Theoretical study on hydrogen storage capacity of expanded h-BN systems. Comput Mater Sci 139:335–340CrossRef
17.
Zurück zum Zitat Tang CM, Zhang X, Zhou XF (2017) Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field. Phys Chem Chem Phys 19:5570–5578CrossRef Tang CM, Zhang X, Zhou XF (2017) Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field. Phys Chem Chem Phys 19:5570–5578CrossRef
18.
Zurück zum Zitat Cheng YH, Zhang CY, Ren J, Tong KY (2016) Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front Phys 11(5):113101CrossRef Cheng YH, Zhang CY, Ren J, Tong KY (2016) Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front Phys 11(5):113101CrossRef
21.
Zurück zum Zitat Hu QK, Sun DD, Wu QH, Wang HY, Wang LB, Liu BZ, Zhou AG, He JL (2013) MXene: a new family of promising hydrogen storage medium. J Phys Chem A 117:14253–14260CrossRef Hu QK, Sun DD, Wu QH, Wang HY, Wang LB, Liu BZ, Zhou AG, He JL (2013) MXene: a new family of promising hydrogen storage medium. J Phys Chem A 117:14253–14260CrossRef
22.
Zurück zum Zitat Hu QK, Wang HY, Wu QH, Ye XT, Zhou AG, Sun DD, Wang LB, Liu BZ, He JL (2014) Two-dimensional Sc2C: a reversible and high-capacity hydrogen storage material predicted by first-principles calculations. Int J Hydrog Energy 39:10606–10612CrossRef Hu QK, Wang HY, Wu QH, Ye XT, Zhou AG, Sun DD, Wang LB, Liu BZ, He JL (2014) Two-dimensional Sc2C: a reversible and high-capacity hydrogen storage material predicted by first-principles calculations. Int J Hydrog Energy 39:10606–10612CrossRef
23.
Zurück zum Zitat Yadav A, Dashora A, Patel N, Miotello A, Press M, Kothari DC (2016) Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. Appl Surf Sci 389:88–95CrossRef Yadav A, Dashora A, Patel N, Miotello A, Press M, Kothari DC (2016) Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. Appl Surf Sci 389:88–95CrossRef
24.
Zurück zum Zitat Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253CrossRef Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253CrossRef
26.
Zurück zum Zitat Li PK, Zhu JG, Handoko AD, Zhang RF, Wang HT, Legut D, Wen XD, Fu ZH, She ZW, Zhang QF (2018) High-throughput theoretical optimization of hydrogen evolution reaction on MXenes by transition metal modification. J Mater Chem A 6:4271–4278CrossRef Li PK, Zhu JG, Handoko AD, Zhang RF, Wang HT, Legut D, Wen XD, Fu ZH, She ZW, Zhang QF (2018) High-throughput theoretical optimization of hydrogen evolution reaction on MXenes by transition metal modification. J Mater Chem A 6:4271–4278CrossRef
27.
Zurück zum Zitat Zhang H, Fu ZH, Zhang RF, Zhang QF, Tian HZ, Legut D, Germann TC, Guo YQ, Du SY, Francisco JS (2017) Designing flexible 2D transition metal carbides with strain-controllable lithium storage. Proc Natl Acad Sci USA 114:E11082–E11091CrossRef Zhang H, Fu ZH, Zhang RF, Zhang QF, Tian HZ, Legut D, Germann TC, Guo YQ, Du SY, Francisco JS (2017) Designing flexible 2D transition metal carbides with strain-controllable lithium storage. Proc Natl Acad Sci USA 114:E11082–E11091CrossRef
29.
Zurück zum Zitat Morel A, Borjon-Piron Y, Porto RL, Brousse T, Bélanger D (2016) Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J Electrochem Soc 163:A1077–A1082CrossRef Morel A, Borjon-Piron Y, Porto RL, Brousse T, Bélanger D (2016) Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J Electrochem Soc 163:A1077–A1082CrossRef
30.
Zurück zum Zitat Wang DS, Gao Y, Liu YH, Jin D, Gogotsi Y, Meng X, Du F, Chen G, Wei YJ (2017) First-principles calculations of Ti2N and Ti2NT2 (T = O, F, OH) monolayers as potential anode materials for lithium-ion batteries and beyond. J Phys Chem C 121:13025–13034CrossRef Wang DS, Gao Y, Liu YH, Jin D, Gogotsi Y, Meng X, Du F, Chen G, Wei YJ (2017) First-principles calculations of Ti2N and Ti2NT2 (T = O, F, OH) monolayers as potential anode materials for lithium-ion batteries and beyond. J Phys Chem C 121:13025–13034CrossRef
31.
Zurück zum Zitat Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh PL, Zhao MQ, Shenoy VB, Barsoum MW, Gogotsi Y (2016) Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8:11385–11391CrossRef Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh PL, Zhao MQ, Shenoy VB, Barsoum MW, Gogotsi Y (2016) Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8:11385–11391CrossRef
32.
Zurück zum Zitat Soundiraraju B, George BK (2017) Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 11:8892–8900CrossRef Soundiraraju B, George BK (2017) Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 11:8892–8900CrossRef
33.
Zurück zum Zitat Shein IR, Ivanovskii AL (2012) Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Comput Mater Sci 65:104–114CrossRef Shein IR, Ivanovskii AL (2012) Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Comput Mater Sci 65:104–114CrossRef
35.
Zurück zum Zitat Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef
36.
Zurück zum Zitat Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef
37.
Zurück zum Zitat Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef
38.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
39.
Zurück zum Zitat Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef
40.
Zurück zum Zitat Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774CrossRef Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774CrossRef
41.
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef
42.
Zurück zum Zitat Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) A generalized synchronous transit method for transition state location. Comput Mater Sci 28:250–258CrossRef Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) A generalized synchronous transit method for transition state location. Comput Mater Sci 28:250–258CrossRef
43.
Zurück zum Zitat Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRef Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRef
44.
Zurück zum Zitat Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A At Mol Opt Phys 31:1695–1697CrossRef Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A At Mol Opt Phys 31:1695–1697CrossRef
45.
Zurück zum Zitat Nosé S (1991) Constant temperature molecular dynamics methods. Prog Theor Phys Suppl 103:1–46CrossRef Nosé S (1991) Constant temperature molecular dynamics methods. Prog Theor Phys Suppl 103:1–46CrossRef
46.
Zurück zum Zitat Srivastava P, Mishra A, Mizuseki H, Lee KR, Singh AK (2016) Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces 8:24256–24264CrossRef Srivastava P, Mishra A, Mizuseki H, Lee KR, Singh AK (2016) Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces 8:24256–24264CrossRef
47.
Zurück zum Zitat Mishra A, Srivastava P, Mizuseki H, Lee KR, Singh AK (2016) Isolation of pristine MXene from Nb4AlC3 MAX phase: a first-principles study. Phys Chem Chem Phys 18:11073–11080CrossRef Mishra A, Srivastava P, Mizuseki H, Lee KR, Singh AK (2016) Isolation of pristine MXene from Nb4AlC3 MAX phase: a first-principles study. Phys Chem Chem Phys 18:11073–11080CrossRef
48.
Zurück zum Zitat Pan H (2015) Electronic properties and lithium storage capacities of two-dimensional transition-metal nitride monolayers. J Mater Chem A 3:21486–21493CrossRef Pan H (2015) Electronic properties and lithium storage capacities of two-dimensional transition-metal nitride monolayers. J Mater Chem A 3:21486–21493CrossRef
49.
Zurück zum Zitat Mishra A, Srivastava P, Carreras A, Tanaka I, Mizuseki H, Lee KR, Singh AK (2017) Atomistic origin of phase stability in oxygen functionalized MXene: a comparative study. J Phys Chem C 121:18947–18953CrossRef Mishra A, Srivastava P, Carreras A, Tanaka I, Mizuseki H, Lee KR, Singh AK (2017) Atomistic origin of phase stability in oxygen functionalized MXene: a comparative study. J Phys Chem C 121:18947–18953CrossRef
50.
Zurück zum Zitat Kubas GJ (2007) Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules. Proc Natl Acad Sci USA 104:6901–6907CrossRef Kubas GJ (2007) Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules. Proc Natl Acad Sci USA 104:6901–6907CrossRef
51.
Zurück zum Zitat Skipper CV, Hamaed A, Antonelli DM, Kaltsoyannis N (2012) The Kubas interaction in M(II) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study. Dalton Trans 41:8515–8523CrossRef Skipper CV, Hamaed A, Antonelli DM, Kaltsoyannis N (2012) The Kubas interaction in M(II) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study. Dalton Trans 41:8515–8523CrossRef
52.
Zurück zum Zitat Park N, Choi K, Hwang J, Kim DW, Kim DO, Ihm J (2012) Progress on first-principles-based materials design for hydrogen storage. Proc Natl Acad Sci USA 109:19893–19899CrossRef Park N, Choi K, Hwang J, Kim DW, Kim DO, Ihm J (2012) Progress on first-principles-based materials design for hydrogen storage. Proc Natl Acad Sci USA 109:19893–19899CrossRef
Metadaten
Titel
Reversible hydrogen storage behaviors of Ti2N MXenes predicted by first-principles calculations
verfasst von
Yameng Li
Yongliang Guo
Wangao Chen
Zhaoyong Jiao
Shuhong Ma
Publikationsdatum
11.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2854-7

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Science 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.