Skip to main content
Erschienen in: Cellulose 12/2017

23.10.2017 | Original Paper

Reversing the structural chirality of cellulosic nanomaterials

verfasst von: Kevin M. Conley, Louis Godbout, M. A. (Tony) Whitehead, Theo G. M. van de Ven

Erschienen in: Cellulose | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nature organizes cellulose, a linear polysaccharide of D-glucose and an important component of plants and trees, into intricate structures with twists in the trunks of trees, microfibrils within cell walls, and at the nanoscale. Manipulating the hierarchical organization of materials requires control down to the molecular level. In computational models cellulose nanocrystals twist, and Quantum Mechanical models have shown recently that chains at the surface of nanocrystals are right-handed, while the interior chains are mostly left-handed. Here we provide experimental evidence showing the induced circular dichroism of two optical dyes reverses when adsorbed onto thin cellulose nanocrystals. The reversal in optical activity is consistent with earlier TD-DFT B3LYP 6-31G calculations of the induced optical activity of Congo red adsorbed onto twisted 1 0 0 crystal surfaces of cellulose and demonstrates control of the chiral molecular interactions at the nanocrystal surface. The results suggest it may be possible to reverse the structural twist handedness of the nanocrystal itself and build chirality-dependent hierarchical supramolecular structures from cellulose.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Azzam F, Galliot M, Putaux JL, Heux L, Jean B (2015) Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22(6):3701–3714CrossRef Azzam F, Galliot M, Putaux JL, Heux L, Jean B (2015) Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22(6):3701–3714CrossRef
Zurück zum Zitat Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439CrossRef Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439CrossRef
Zurück zum Zitat Bates FJ et al (1942) Polarimetry, saccharimetry and the sugars, vol 440. US Government Printing Office Washington, DC Bates FJ et al (1942) Polarimetry, saccharimetry and the sugars, vol 440. US Government Printing Office Washington, DC
Zurück zum Zitat Belli S, Dussi S, Dijkstra M, van Roij R (2014) Density functional theory for chiral nematic liquid crystals. Phys Rev E 90(2):020503CrossRef Belli S, Dussi S, Dijkstra M, van Roij R (2014) Density functional theory for chiral nematic liquid crystals. Phys Rev E 90(2):020503CrossRef
Zurück zum Zitat Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRef
Zurück zum Zitat Bu L, Himmel ME, Crowley MF (2015) The molecular origins of twist in cellulose I-beta. Carbohydr Polym 125:146–152CrossRef Bu L, Himmel ME, Crowley MF (2015) The molecular origins of twist in cellulose I-beta. Carbohydr Polym 125:146–152CrossRef
Zurück zum Zitat Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016a) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299CrossRef Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016a) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299CrossRef
Zurück zum Zitat Conley K, Whitehead MA, van de Ven TGM (2016b) Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation. Cellulose 23:1553–1563CrossRef Conley K, Whitehead MA, van de Ven TGM (2016b) Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation. Cellulose 23:1553–1563CrossRef
Zurück zum Zitat Conley K, Whitehead MA, van de Ven TGM (2016) Electronic structure calculations of twisted cellulose crystalloids. J For 5(4):54–61 Conley K, Whitehead MA, van de Ven TGM (2016) Electronic structure calculations of twisted cellulose crystalloids. J For 5(4):54–61
Zurück zum Zitat Conley K, Whitehead MA, van de Ven TGM (2017) Probing the structural chirality of crystalline cellulose with induced circular dichroism. Cellulose 24(2):479–486CrossRef Conley K, Whitehead MA, van de Ven TGM (2017) Probing the structural chirality of crystalline cellulose with induced circular dichroism. Cellulose 24(2):479–486CrossRef
Zurück zum Zitat Cui X, Nichols SM, Arteaga O, Freudenthal J, Paula F, Shtukenberg AG, Kahr B (2016) Dichroism in helicoidal crystals. J Am Chem Soc 138(37):12211–12218CrossRef Cui X, Nichols SM, Arteaga O, Freudenthal J, Paula F, Shtukenberg AG, Kahr B (2016) Dichroism in helicoidal crystals. J Am Chem Soc 138(37):12211–12218CrossRef
Zurück zum Zitat Dong XM, Gray DG (1997) Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 13(11):3029–3034CrossRef Dong XM, Gray DG (1997) Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 13(11):3029–3034CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef
Zurück zum Zitat Engle AR, Purdie N, Hyatt JA (1994) Induced circular dichroism study of the aqueous solution complexation of cello-oligosaccharides and related polysaccharides with aromatic dyes. Carbohydr Res 265(2):181–195CrossRef Engle AR, Purdie N, Hyatt JA (1994) Induced circular dichroism study of the aqueous solution complexation of cello-oligosaccharides and related polysaccharides with aromatic dyes. Carbohydr Res 265(2):181–195CrossRef
Zurück zum Zitat Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
Zurück zum Zitat Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756CrossRef Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756CrossRef
Zurück zum Zitat Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220CrossRef Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220CrossRef
Zurück zum Zitat Hirai A, Inui O, Horii F, Tsuji M (2008) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502CrossRef Hirai A, Inui O, Horii F, Tsuji M (2008) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502CrossRef
Zurück zum Zitat Hosseinidoust Z, Basnet M, van de Ven TG, Tufenkji N (2016) One-pot green synthesis of anisotropic silver nanoparticles. Environ Sci Nano 3:1259–1264CrossRef Hosseinidoust Z, Basnet M, van de Ven TG, Tufenkji N (2016) One-pot green synthesis of anisotropic silver nanoparticles. Environ Sci Nano 3:1259–1264CrossRef
Zurück zum Zitat Kannam SK, Oehme DP, Doblin MS, Gidley MJ, Bacic A, Downton MT (2017) Hydrogen bonds and twist in cellulose microfibrils. Carbohydr Polym 175:433–439CrossRef Kannam SK, Oehme DP, Doblin MS, Gidley MJ, Bacic A, Downton MT (2017) Hydrogen bonds and twist in cellulose microfibrils. Carbohydr Polym 175:433–439CrossRef
Zurück zum Zitat Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637CrossRef Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637CrossRef
Zurück zum Zitat Khandelwal M, Windle A (2014) Origin of chiral interactions in cellulose supra-molecular microfibrils. Carbohydr Polym 106:128–131CrossRef Khandelwal M, Windle A (2014) Origin of chiral interactions in cellulose supra-molecular microfibrils. Carbohydr Polym 106:128–131CrossRef
Zurück zum Zitat Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef
Zurück zum Zitat Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489CrossRef Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489CrossRef
Zurück zum Zitat Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16(6):999–1015CrossRef Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16(6):999–1015CrossRef
Zurück zum Zitat Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19(5):1599–1605CrossRef Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19(5):1599–1605CrossRef
Zurück zum Zitat Majoinen J, Hassinen J, Haataja JS, Rekola HT, Kontturi E, Kostiainen MA, Ras RH, Törmä P, Ikkala O (2016) Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv Mater 28(26):5262–5267CrossRef Majoinen J, Hassinen J, Haataja JS, Rekola HT, Kontturi E, Kostiainen MA, Ras RH, Törmä P, Ikkala O (2016) Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv Mater 28(26):5262–5267CrossRef
Zurück zum Zitat Malho JM, Morits M, Lobling TI, Majoinen J, Schacher FH, Ikkala O, Groschel AH (2016) Rod-like nanoparticles with striped and helical topography. ACS Macro Lett 5:1185–1190CrossRef Malho JM, Morits M, Lobling TI, Majoinen J, Schacher FH, Ikkala O, Groschel AH (2016) Rod-like nanoparticles with striped and helical topography. ACS Macro Lett 5:1185–1190CrossRef
Zurück zum Zitat Matsuo K, Namatame H, Taniguchi M, Gekko K (2012) Vacuum-ultraviolet electronic circular dichroism study of methyl \(\alpha\)-d-glucopyranoside in aqueous solution by time-dependent density functional theory. J Phys Chem A 116(40):9996–10003CrossRef Matsuo K, Namatame H, Taniguchi M, Gekko K (2012) Vacuum-ultraviolet electronic circular dichroism study of methyl \(\alpha\)-d-glucopyranoside in aqueous solution by time-dependent density functional theory. J Phys Chem A 116(40):9996–10003CrossRef
Zurück zum Zitat Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I\(\beta\). Carbohydr Res 341(1):138–152CrossRef Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I\(\beta\). Carbohydr Res 341(1):138–152CrossRef
Zurück zum Zitat Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19(5):1495–1506CrossRef Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19(5):1495–1506CrossRef
Zurück zum Zitat Mukherjee S, Woods H (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511CrossRef Mukherjee S, Woods H (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I\(\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I\(\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
Zurück zum Zitat Querejeta-Fernández A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy AS, Kumacheva E (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9(10):10377–10385CrossRef Querejeta-Fernández A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy AS, Kumacheva E (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9(10):10377–10385CrossRef
Zurück zum Zitat Revol JF, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef Revol JF, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRef
Zurück zum Zitat Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982CrossRef Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982CrossRef
Zurück zum Zitat Schutz C, Agthe M, Fall AB, Gordeyeva K, Guccini V, Salajková M, Plivelic TS, Lagerwall JP, Salazar-Alvarez G, Bergstrom L (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31(23):6507–6513CrossRef Schutz C, Agthe M, Fall AB, Gordeyeva K, Guccini V, Salajková M, Plivelic TS, Lagerwall JP, Salazar-Alvarez G, Bergstrom L (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31(23):6507–6513CrossRef
Zurück zum Zitat Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425CrossRef Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425CrossRef
Zurück zum Zitat Straley JP (1976) Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev A 14(5):1835–1841CrossRef Straley JP (1976) Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev A 14(5):1835–1841CrossRef
Zurück zum Zitat Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564CrossRef Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564CrossRef
Zurück zum Zitat Zhang X, Wang L, Dong S, Zhang X, Wu Q, Zhao L, Shi Y (2016) Nanocellulose 3, 5-dimethylphenylcarbamate derivative coated chiral stationary phase: preparation and enantioseparation performance. Chirality 28(5):376–381CrossRef Zhang X, Wang L, Dong S, Zhang X, Wu Q, Zhao L, Shi Y (2016) Nanocellulose 3, 5-dimethylphenylcarbamate derivative coated chiral stationary phase: preparation and enantioseparation performance. Chirality 28(5):376–381CrossRef
Zurück zum Zitat Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68(2):235–241CrossRef Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68(2):235–241CrossRef
Metadaten
Titel
Reversing the structural chirality of cellulosic nanomaterials
verfasst von
Kevin M. Conley
Louis Godbout
M. A. (Tony) Whitehead
Theo G. M. van de Ven
Publikationsdatum
23.10.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1533-1

Weitere Artikel der Ausgabe 12/2017

Cellulose 12/2017 Zur Ausgabe