Skip to main content
Erschienen in: Fire Technology 1/2021

05.06.2020

Review of Current Practice in Probabilistic Structural Fire Engineering: Permanent and Live Load Modelling

verfasst von: Balša Jovanović, Ruben Van Coile, Danny Hopkin, Negar Elhami Khorasani, David Lange, Thomas Gernay

Erschienen in: Fire Technology | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Probabilistic analysis is receiving increased attention from fire engineers, assessment bodies and researchers. It is however often unclear which probabilistic models are appropriate for the analysis. For example, in probabilistic structural fire engineering, the models used to describe the permanent and live loads differ widely between studies. Through a literature review, it is observed that these diverging load models are based on surveys conducted between 1893 and 1976 and that widely adopted assumptions, such as the rule for combining permanent and live loads into the total load effect, are commonly adopted based on precedent. The diverging current models however relate to mostly the same underlying datasets and basic methodologies. Differences can be attributed (largely) to specific assumptions in different background papers, which have become consolidated through repeated use in research papers and adoption in background documents to codes. By reviewing the studies underlying currently applied probabilistic load models in structural fire engineering, a consolidated probabilistic load model is proposed in this paper. It is concluded that the total load effect is ideally described by KE·(G + Q), with KE the model uncertainty for the load effect, G the permanent load, and Q the imposed load. The model uncertainty KE can be described by a lognormal distribution with mean equal to unity and coefficient of variation (COV) of 0.10. The permanent load is preferably modelled by a normal distribution with mean equal to the nominal permanent load, and a COV which can either be assessed on a project specific basis, or can be set to 0.10 for a first assessment. For common occupancies (office, residential), the live load is preferably modelled by a Gamma distribution. The mean live load can be taken as 0.2 times the nominal, and the live load COV can be taken as 0.60 for large load areas (> 200 m2) and 0.95 for smaller load areas (< 100 m2). Comparison between the failure probabilities of steel and concrete columns subject to fire, considering the proposed consolidated model and two currently commonly used models, indicates that relative differences of the probability of failure can be in the order of 10%. Live load models for evacuation routes and warehouses require specific study and are outside the scope of the review.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hopkin D, Van Coile R, Lange D (2017) Certain uncertainty—demonstrating safety in fire engineering design and the need for safety targets Hopkin D, Van Coile R, Lange D (2017) Certain uncertainty—demonstrating safety in fire engineering design and the need for safety targets
9.
Zurück zum Zitat Hamilton SR (2011) Performance-based fire engineering for steel framed structures: a probabilistic methodology. Doctoral thesis. Stanford University, USA Hamilton SR (2011) Performance-based fire engineering for steel framed structures: a probabilistic methodology. Doctoral thesis. Stanford University, USA
10.
Zurück zum Zitat Devaney S (2014) Development of software for reliability based design of steel framed structures in fire. Doctoral thesis. The University of Edinburgh, UK Devaney S (2014) Development of software for reliability based design of steel framed structures in fire. Doctoral thesis. The University of Edinburgh, UK
12.
Zurück zum Zitat Holicky M, Schleich JB (2001) Modelling of a structure under permanent and fire design situation. In: Proceedings of the IABSE international conference on safety, risk, reliability-trends in engineering, Malta, pp 1001–1006 Holicky M, Schleich JB (2001) Modelling of a structure under permanent and fire design situation. In: Proceedings of the IABSE international conference on safety, risk, reliability-trends in engineering, Malta, pp 1001–1006
13.
Zurück zum Zitat Hosser D, Weilert A, Klinzmann C, Schnetgöke R, Albrecht C (2008) Erarbeitung eines Sicherheitskonzeptes für die brandschutztechnische Bemessung unter Anwendung von Ingenieurmethoden gemäßEurocode 1 Teil 1-2 (Sicherheitskonzept zur Brandschutzbemessung). Abschlussbericht zum DIBt-Vorhaben ZP 52–55 Hosser D, Weilert A, Klinzmann C, Schnetgöke R, Albrecht C (2008) Erarbeitung eines Sicherheitskonzeptes für die brandschutztechnische Bemessung unter Anwendung von Ingenieurmethoden gemäßEurocode 1 Teil 1-2 (Sicherheitskonzept zur Brandschutzbemessung). Abschlussbericht zum DIBt-Vorhaben ZP 52–55
14.
Zurück zum Zitat Van Coile R (2015) Reliability-based decision making for concrete elements exposed to fire. Doctoral thesis. Ghent University, Belgium Van Coile R (2015) Reliability-based decision making for concrete elements exposed to fire. Doctoral thesis. Ghent University, Belgium
17.
Zurück zum Zitat Holický M, Materna A, Selacek G, Schleich J-B, Arteaga A, Sanpaolesi L, Vrouwenvelder T, Kovse I, Gulvanessian H (2005) Implementation of Eurocodes: handbook 5: design of buildings for the fire situation. Leonardo Da Vinci Pilot Project CZ/02/B/F/PP-134007 Holický M, Materna A, Selacek G, Schleich J-B, Arteaga A, Sanpaolesi L, Vrouwenvelder T, Kovse I, Gulvanessian H (2005) Implementation of Eurocodes: handbook 5: design of buildings for the fire situation. Leonardo Da Vinci Pilot Project CZ/02/B/F/PP-134007
18.
Zurück zum Zitat Van Coile R, Hopkin D, Elhami Khorasani N, Lange D, Gernay T (2019) Permanent and live load model for probabilistic structural fire analysis: a review. In: CONFAB 2019, 3rd international conference on structural safety under fire and blast loading, proceedings, London Van Coile R, Hopkin D, Elhami Khorasani N, Lange D, Gernay T (2019) Permanent and live load model for probabilistic structural fire analysis: a review. In: CONFAB 2019, 3rd international conference on structural safety under fire and blast loading, proceedings, London
19.
Zurück zum Zitat Khorasani NE (2015) A probabilistic framework for multi-hazard evaluations of buildings and communities subject to fire and earthquake scenarios. Doctoral thesis. Princeton University, USA Khorasani NE (2015) A probabilistic framework for multi-hazard evaluations of buildings and communities subject to fire and earthquake scenarios. Doctoral thesis. Princeton University, USA
21.
Zurück zum Zitat Lange D, Hopkin D, Van Coile R, Elhami Khorasani N (2019) Uncertainty in structural fire design. In: Hopkin D, La Malva (eds) Handbook structural fire engineering. Springer, New York Lange D, Hopkin D, Van Coile R, Elhami Khorasani N (2019) Uncertainty in structural fire design. In: Hopkin D, La Malva (eds) Handbook structural fire engineering. Springer, New York
23.
Zurück zum Zitat CEN (2002) EN 1990:2002 Basis of structural design. European Standard CEN (2002) EN 1990:2002 Basis of structural design. European Standard
24.
Zurück zum Zitat ASCE Standard (2017) ASCE/SEI 7-16 minimum design loads for buildings and other structures. American Society of Civil Engineers ASCE Standard (2017) ASCE/SEI 7-16 minimum design loads for buildings and other structures. American Society of Civil Engineers
25.
Zurück zum Zitat Ravindra M, Galambos T (1978) Load and resistance factor design for steel. J Struct Div 104:1337–1353CrossRef Ravindra M, Galambos T (1978) Load and resistance factor design for steel. J Struct Div 104:1337–1353CrossRef
26.
Zurück zum Zitat Ellingwood B, Culver C (1977) Analysis of live loads in office buildings. J Struct Div 103 (8):1551–1560CrossRef Ellingwood B, Culver C (1977) Analysis of live loads in office buildings. J Struct Div 103 (8):1551–1560CrossRef
27.
Zurück zum Zitat Chalk PL, Corotis RB (1980) Probability model for design live loads. J Struct Div 106 (10):2017–2033CrossRef Chalk PL, Corotis RB (1980) Probability model for design live loads. J Struct Div 106 (10):2017–2033CrossRef
28.
Zurück zum Zitat Holický M, Materna A, Sedlacek G, Arteaga A, Sanpaolesi L, Vrouwenvelder T, Kovse I, Gulvanessian H (2005) Implementation of Eurocodes—handbook 3—action effects for buildings. Leonardo da Vinci Pilot Project CZ/02/B/F/PP-134007 Holický M, Materna A, Sedlacek G, Arteaga A, Sanpaolesi L, Vrouwenvelder T, Kovse I, Gulvanessian H (2005) Implementation of Eurocodes—handbook 3—action effects for buildings. Leonardo da Vinci Pilot Project CZ/02/B/F/PP-134007
29.
Zurück zum Zitat CEN (2002) EN 1991:2002 Actions on structures—part 1-1: general actions—densities, self-weight, imposed loads for buildings. European Standard CEN (2002) EN 1991:2002 Actions on structures—part 1-1: general actions—densities, self-weight, imposed loads for buildings. European Standard
30.
Zurück zum Zitat Holický M, Sýkora M (2010) Stochastic models in analysis of structural reliability. In: Proceedings of the international symposium on stochastic models in reliability engineering, life sciences and operation management, Beer Sheva, Israel Holický M, Sýkora M (2010) Stochastic models in analysis of structural reliability. In: Proceedings of the international symposium on stochastic models in reliability engineering, life sciences and operation management, Beer Sheva, Israel
31.
Zurück zum Zitat JCSS (2001) JCSS probabilistic model code. Part 2.2 live load. Joint Committee on Structural Safety JCSS (2001) JCSS probabilistic model code. Part 2.2 live load. Joint Committee on Structural Safety
32.
Zurück zum Zitat Mitchell GR, Woodgate RW (1971) Floor loadings in office buildings: the results of a survey. Building Research Station, Department of the Environment, Garston, Watford Mitchell GR, Woodgate RW (1971) Floor loadings in office buildings: the results of a survey. Building Research Station, Department of the Environment, Garston, Watford
33.
Zurück zum Zitat JCSS (2001) Probabilistic model code. Part 3.9 model uncertainties. Joint Committee on Structural Safety JCSS (2001) Probabilistic model code. Part 3.9 model uncertainties. Joint Committee on Structural Safety
34.
Zurück zum Zitat CIB (1989) Actions on structures: self-weight loads, CIB Report CIB (1989) Actions on structures: self-weight loads, CIB Report
35.
Zurück zum Zitat JCSS (2001) Probabilistic model code. Part 2.1 self weight. Joint Committee on Structural Safety JCSS (2001) Probabilistic model code. Part 2.1 self weight. Joint Committee on Structural Safety
38.
Zurück zum Zitat Sykora M (2005) Probabilistic analysis of time-variant structural reliability. Doctoral thesis. Czech Technical University in Prague, Czech Republic Sykora M (2005) Probabilistic analysis of time-variant structural reliability. Doctoral thesis. Czech Technical University in Prague, Czech Republic
39.
Zurück zum Zitat CIB (1989) Actions on structures: live loads in buildings. CIB Report CIB (1989) Actions on structures: live loads in buildings. CIB Report
40.
Zurück zum Zitat Peir J (1971) A stochastic live load model for buildings. Doctoral thesis. Massachusetts Institute Of Technology. USA Peir J (1971) A stochastic live load model for buildings. Doctoral thesis. Massachusetts Institute Of Technology. USA
41.
Zurück zum Zitat McGuire RK, Cornell CA (1974) Live load effects in office buildings. J Struct Div 100:1351–1366CrossRef McGuire RK, Cornell CA (1974) Live load effects in office buildings. J Struct Div 100:1351–1366CrossRef
42.
Zurück zum Zitat Peir J-C, Cornell CA (1973) Spatial and temporal variability of live loads. J Struct Div 99:903–922CrossRef Peir J-C, Cornell CA (1973) Spatial and temporal variability of live loads. J Struct Div 99:903–922CrossRef
43.
Zurück zum Zitat Corotis RB (1972) Statistical analysis of live load in column design. J Struct Div 92:1803–1815CrossRef Corotis RB (1972) Statistical analysis of live load in column design. J Struct Div 92:1803–1815CrossRef
45.
Zurück zum Zitat Sentler L (1976) Live load surveys: a review with discussions. Division of Building Technology, Lund Institute of Technology Lund Sentler L (1976) Live load surveys: a review with discussions. Division of Building Technology, Lund Institute of Technology Lund
48.
50.
Zurück zum Zitat International Code Council (ICC) (2018) International building code. International Code Council, Incorporated International Code Council (ICC) (2018) International building code. International Code Council, Incorporated
51.
Zurück zum Zitat AISC (American Institute of Steel Construction) (2016) Specification for structural steel buildings, ANSI/AISC 360-16. American Institute of Steel Construction AISC (American Institute of Steel Construction) (2016) Specification for structural steel buildings, ANSI/AISC 360-16. American Institute of Steel Construction
53.
Zurück zum Zitat CEN (2002) EN 1993:2002 Design of steel structures—part 1-2: general rules—structural fire design. European Standard CEN (2002) EN 1993:2002 Design of steel structures—part 1-2: general rules—structural fire design. European Standard
55.
Zurück zum Zitat Biasoli F, Mancini G, Just M, Curbach M, Walraven J, Gmeiner S, Arrieta J, Frank R, Morin C, Robert F, Poljansek M, Kamenarova B., Dimova S, Pinto Vieira A (2014) Eurocode 2: background & applications, design of concrete buildings. Worked Examples. Publications Office of the European Union, Luxemburg Biasoli F, Mancini G, Just M, Curbach M, Walraven J, Gmeiner S, Arrieta J, Frank R, Morin C, Robert F, Poljansek M, Kamenarova B., Dimova S, Pinto Vieira A (2014) Eurocode 2: background & applications, design of concrete buildings. Worked Examples. Publications Office of the European Union, Luxemburg
56.
Zurück zum Zitat ISO (2017) ISO/TR 24679-6:2017 Fire safety engineering—performance of structures in fire—part 6: example of an eight-storey office concrete building. International Organization for Standardization, Geneva, Switzerland ISO (2017) ISO/TR 24679-6:2017 Fire safety engineering—performance of structures in fire—part 6: example of an eight-storey office concrete building. International Organization for Standardization, Geneva, Switzerland
57.
Zurück zum Zitat JCSS (2001) JCSS probabilistic model code. Part 3.10 dimensions JCSS (2001) JCSS probabilistic model code. Part 3.10 dimensions
Metadaten
Titel
Review of Current Practice in Probabilistic Structural Fire Engineering: Permanent and Live Load Modelling
verfasst von
Balša Jovanović
Ruben Van Coile
Danny Hopkin
Negar Elhami Khorasani
David Lange
Thomas Gernay
Publikationsdatum
05.06.2020
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2021
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-01005-w

Weitere Artikel der Ausgabe 1/2021

Fire Technology 1/2021 Zur Ausgabe