Skip to main content
Erschienen in: Journal of Materials Science 19/2017

09.03.2017 | Macroporous Materials

Review of macroporous materials as electrochemical supercapacitor electrodes

verfasst von: Yingxi Zhang, Shuai Yu, Gaobo Lou, Yalun Shen, Hao Chen, Zhehong Shen, Shuyan Zhao, Jinzhi Zhang, Shigan Chai, Qichao Zou

Erschienen in: Journal of Materials Science | Ausgabe 19/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Benefitting from excellent reversibility, high power density, and long cycle lifetime, electrochemical supercapacitors have become a versatile solution to meet the needs of various emerging energy storage applications. Their performances depend strongly on the properties of electrode materials. The composition, morphology, and structure are considered as the most important factors affecting the performances of electrode materials. Many previous review articles have discussed the research advances of some SC electrode materials with similar chemical compositions or microscopic morphologies. However, few review articles put their focus on the specific microstructures. Macropores, as a typical microstructure, can serve as ion-buffering reservoirs to minimize the diffusion distances of electrolyte. Thus, tremendous research efforts have been recently made to design and construct macropores for electrode materials to improve supercapacitive performance. Therefore, in this article, we review the recent developments of macroporous materials for SC applications, primarily including the preparation, microstructure, and performance of macroporous electrode materials. Typical five categories of macroporous electrode materials, including biomass-derived macroporous carbons, non-biomass-derived macroporous carbons, non-carbon-based macroporous materials, macroporous carbon-based composite materials, and active materials supported on macroporous substrates, are discussed in detail. Since mesopores can decrease ion-transport resistance, and micropores favor in-depth interfacial interactions, most porous electrode materials with excellent performance usually contain hierarchical porous structures consisting of macropores, mesopores, and micropores. Thus, the synergistic effects of hierarchical porous structures of various electrode materials are also indicated and summarized in this article. In addition, we also describe the influences of architecture’s several factors on the performance, and the differences in architecture of five categories of electrode materials. Finally, we present our perspectives on the challenges and prospects of macroporous electrode materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270CrossRef Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270CrossRef
2.
Zurück zum Zitat Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9(6):6288–6296CrossRef Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9(6):6288–6296CrossRef
3.
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRef
4.
Zurück zum Zitat Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24(30):4197–4202CrossRef Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24(30):4197–4202CrossRef
5.
Zurück zum Zitat Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6(1):41–53CrossRef Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6(1):41–53CrossRef
6.
Zurück zum Zitat Yu S, Liu D, Zhao S, Bao B, Jin C, Huang W, Chen H, Shen Z (2015) Synthesis of wood derived nitrogen-doped porous carbon–polyaniline composites for supercapacitor electrode materials. RSC Adv 5(39):30943–30949CrossRef Yu S, Liu D, Zhao S, Bao B, Jin C, Huang W, Chen H, Shen Z (2015) Synthesis of wood derived nitrogen-doped porous carbon–polyaniline composites for supercapacitor electrode materials. RSC Adv 5(39):30943–30949CrossRef
7.
Zurück zum Zitat Chen H, Zhou S, Wu L (2014) Porous nickel hydroxide–manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Interfaces 6(11):8621–8630CrossRef Chen H, Zhou S, Wu L (2014) Porous nickel hydroxide–manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Interfaces 6(11):8621–8630CrossRef
8.
Zurück zum Zitat Chen H, Zhou S, Chen M, Wu L (2012) Reduced graphene oxide–mno2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors. J Mater Chem 22:25207–25216CrossRef Chen H, Zhou S, Chen M, Wu L (2012) Reduced graphene oxide–mno2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors. J Mater Chem 22:25207–25216CrossRef
9.
Zurück zum Zitat Chen H, Hu L, Yan Y, Che R, Chen M, Wu L (2013) One-step fabrication of ultrathin porous nickel hydroxide–manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv Energy Mater 3(12):1636–1646CrossRef Chen H, Hu L, Yan Y, Che R, Chen M, Wu L (2013) One-step fabrication of ultrathin porous nickel hydroxide–manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv Energy Mater 3(12):1636–1646CrossRef
10.
Zurück zum Zitat Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24(7):934–942CrossRef Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24(7):934–942CrossRef
11.
Zurück zum Zitat Huang J, Sumpter BG, Meunier V (2008) Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed 47(3):520–524CrossRef Huang J, Sumpter BG, Meunier V (2008) Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed 47(3):520–524CrossRef
12.
Zurück zum Zitat Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950CrossRef Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950CrossRef
13.
Zurück zum Zitat Tang J, Yamauchi Y (2016) Carbon materials: MOF morphologies in control. Nat Chem 8(7):638–639CrossRef Tang J, Yamauchi Y (2016) Carbon materials: MOF morphologies in control. Nat Chem 8(7):638–639CrossRef
14.
Zurück zum Zitat Torad NL, Salunkhe RR, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C-C, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem-Eur J 20(26):7895–7900CrossRef Torad NL, Salunkhe RR, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C-C, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem-Eur J 20(26):7895–7900CrossRef
15.
Zurück zum Zitat Salunkhe RR, Kamachi Y, Torad NL, Hwang SM, Sun Z, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2(46):19848–19854CrossRef Salunkhe RR, Kamachi Y, Torad NL, Hwang SM, Sun Z, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2(46):19848–19854CrossRef
16.
Zurück zum Zitat Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49(12):2796–2806CrossRef Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49(12):2796–2806CrossRef
17.
Zurück zum Zitat Sahoo S, Rout CS (2016) Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochim Acta 220:57–66CrossRef Sahoo S, Rout CS (2016) Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochim Acta 220:57–66CrossRef
18.
Zurück zum Zitat Zhao Y, Chen M, Wu L (2016) Recent progress in hollow sphere-based electrodes for high-performance supercapacitors. Nanotechnology 27(34):342001CrossRef Zhao Y, Chen M, Wu L (2016) Recent progress in hollow sphere-based electrodes for high-performance supercapacitors. Nanotechnology 27(34):342001CrossRef
19.
Zurück zum Zitat Zhang H, Cao G, Yang Y (2009) Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci 2(9):932–943CrossRef Zhang H, Cao G, Yang Y (2009) Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ Sci 2(9):932–943CrossRef
20.
Zurück zum Zitat Zhang LL, Gu Y, Zhao XS (2013) Advanced porous carbon electrodes for electrochemical capacitors. J Mater Chem A 1(33):9395–9408CrossRef Zhang LL, Gu Y, Zhao XS (2013) Advanced porous carbon electrodes for electrochemical capacitors. J Mater Chem A 1(33):9395–9408CrossRef
21.
Zurück zum Zitat Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028CrossRef Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028CrossRef
22.
Zurück zum Zitat Liu Z, Tan X, Gao X, Song L (2014) Synthesis of three-dimensionally ordered macroporous manganese dioxide–carbon nanocomposites for supercapacitors. J Power Sources 267:812–820CrossRef Liu Z, Tan X, Gao X, Song L (2014) Synthesis of three-dimensionally ordered macroporous manganese dioxide–carbon nanocomposites for supercapacitors. J Power Sources 267:812–820CrossRef
23.
Zurück zum Zitat Cheng Q, Xia Y, Pavlinek V, Yan Y, Li C, Saha P (2012) Effects of macropore size on structural and electrochemical properties of hierarchical porous carbons. J Mater Sci 47(17):6444–6450CrossRef Cheng Q, Xia Y, Pavlinek V, Yan Y, Li C, Saha P (2012) Effects of macropore size on structural and electrochemical properties of hierarchical porous carbons. J Mater Sci 47(17):6444–6450CrossRef
24.
Zurück zum Zitat Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2008) 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angew Chem Int Ed 47(2):373–376CrossRef Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2008) 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angew Chem Int Ed 47(2):373–376CrossRef
25.
Zurück zum Zitat Estevez L, Dua R, Bhandari N, Ramanujapuram A, Wang P, Giannelis EP (2013) A facile approach for the synthesis of monolithic hierarchical porous carbons—high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ Sci 6(6):1785–1790CrossRef Estevez L, Dua R, Bhandari N, Ramanujapuram A, Wang P, Giannelis EP (2013) A facile approach for the synthesis of monolithic hierarchical porous carbons—high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ Sci 6(6):1785–1790CrossRef
26.
Zurück zum Zitat Zhu T, Zhou J, Li Z, Li S, Si W, Zhuo S (2014) Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors. J Mater Chem A 2(31):12545–12551CrossRef Zhu T, Zhou J, Li Z, Li S, Si W, Zhuo S (2014) Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors. J Mater Chem A 2(31):12545–12551CrossRef
27.
Zurück zum Zitat Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43(10):3303–3323CrossRef Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43(10):3303–3323CrossRef
28.
Zurück zum Zitat Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef
29.
Zurück zum Zitat Liang Q, Ye L, Huang ZH, Xu Q, Bai Y, Kang F, Yang QH (2014) A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6(22):13831–13837CrossRef Liang Q, Ye L, Huang ZH, Xu Q, Bai Y, Kang F, Yang QH (2014) A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6(22):13831–13837CrossRef
30.
Zurück zum Zitat Kalyani P, Anitha A (2013) Biomass carbon & its prospects in electrochemical energy systems. Int J Hydrogen Energ 38(10):4034–4045CrossRef Kalyani P, Anitha A (2013) Biomass carbon & its prospects in electrochemical energy systems. Int J Hydrogen Energ 38(10):4034–4045CrossRef
31.
Zurück zum Zitat Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592CrossRef Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592CrossRef
32.
Zurück zum Zitat Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710–23725CrossRef Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710–23725CrossRef
33.
Zurück zum Zitat Zhang T, Zheng M, Li N, Lu H, Zhang S, Cao J (2013) Macro–microporous carbon for supercapacitors derived from rape seed shell. Mater Lett 105:43–46CrossRef Zhang T, Zheng M, Li N, Lu H, Zhang S, Cao J (2013) Macro–microporous carbon for supercapacitors derived from rape seed shell. Mater Lett 105:43–46CrossRef
34.
Zurück zum Zitat Luan Y, Wang L, Guo S, Jiang B, Zhao D, Yan H, Tian C, Fu H (2015) A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Adv 5(53):42430–42437CrossRef Luan Y, Wang L, Guo S, Jiang B, Zhao D, Yan H, Tian C, Fu H (2015) A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Adv 5(53):42430–42437CrossRef
35.
Zurück zum Zitat Cao Y, Wang K, Wang X, Gu Z, Fan Q, Gibbons W, Hoefelmeyer JD, Kharel PR, Shrestha M (2016) Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim Acta 212:839–847CrossRef Cao Y, Wang K, Wang X, Gu Z, Fan Q, Gibbons W, Hoefelmeyer JD, Kharel PR, Shrestha M (2016) Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim Acta 212:839–847CrossRef
36.
Zurück zum Zitat Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324CrossRef Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324CrossRef
37.
Zurück zum Zitat Chen H, Liu D, Shen Z, Bao B, Zhao S, Wu L (2015) Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials. Electrochim Acta 180:241–251CrossRef Chen H, Liu D, Shen Z, Bao B, Zhao S, Wu L (2015) Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials. Electrochim Acta 180:241–251CrossRef
38.
Zurück zum Zitat Yuan L, Feng C, Wang C, Fu Z, Yang X, Tang Y (2016) Facile fabrication of activated carbonized horseweed-based biomaterials and their application in supercapacitors. J Mater Sci 51(8):3880–3887. doi:10.1007/s10853-015-9707-4 CrossRef Yuan L, Feng C, Wang C, Fu Z, Yang X, Tang Y (2016) Facile fabrication of activated carbonized horseweed-based biomaterials and their application in supercapacitors. J Mater Sci 51(8):3880–3887. doi:10.​1007/​s10853-015-9707-4 CrossRef
39.
Zurück zum Zitat Huang W, Zhang H, Huang Y, Wang W, Wei S (2011) Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49(3):838–843CrossRef Huang W, Zhang H, Huang Y, Wang W, Wei S (2011) Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49(3):838–843CrossRef
40.
Zurück zum Zitat Zhang F, Liu T, Hou G, Kou T, Yue L, Guan R, Li Y (2016) Hierarchically porous carbon foams for electric double layer capacitors. Nano Res 9(10):2875–2888CrossRef Zhang F, Liu T, Hou G, Kou T, Yue L, Guan R, Li Y (2016) Hierarchically porous carbon foams for electric double layer capacitors. Nano Res 9(10):2875–2888CrossRef
41.
Zurück zum Zitat Ruan C, Ai K, Lu L (2014) Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Adv 4(58):30887–30895CrossRef Ruan C, Ai K, Lu L (2014) Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Adv 4(58):30887–30895CrossRef
42.
Zurück zum Zitat Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4(16):5973–5983CrossRef Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4(16):5973–5983CrossRef
43.
Zurück zum Zitat Jiang J, Zhang L, Wang X, Holm N, Rajagopalan K, Chen F, Ma S (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481–489CrossRef Jiang J, Zhang L, Wang X, Holm N, Rajagopalan K, Chen F, Ma S (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481–489CrossRef
44.
Zurück zum Zitat Liu M-C, Kong L-B, Zhang P, Luo Y-C, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443–448CrossRef Liu M-C, Kong L-B, Zhang P, Luo Y-C, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443–448CrossRef
45.
Zurück zum Zitat Cuña A, Tancredi N, Bussi J, Barranco V, Centeno TA, Quevedo A, Rojo JM (2014) Biocarbon monoliths as supercapacitor electrodes: influence of wood anisotropy on their electrical and electrochemical properties. J Electrochem Soc 161(12):A1806–A1811CrossRef Cuña A, Tancredi N, Bussi J, Barranco V, Centeno TA, Quevedo A, Rojo JM (2014) Biocarbon monoliths as supercapacitor electrodes: influence of wood anisotropy on their electrical and electrochemical properties. J Electrochem Soc 161(12):A1806–A1811CrossRef
46.
Zurück zum Zitat Wu F-C, Tseng R-L, Hu C-C, Wang C-C (2004) Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. J Power Sources 138(1–2):351–359CrossRef Wu F-C, Tseng R-L, Hu C-C, Wang C-C (2004) Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. J Power Sources 138(1–2):351–359CrossRef
47.
Zurück zum Zitat Budinova T, Ekinci E, Yardim F, Grimm A, Björnbom E, Minkova V, Goranova M (2006) Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process Technol 87(10):899–905CrossRef Budinova T, Ekinci E, Yardim F, Grimm A, Björnbom E, Minkova V, Goranova M (2006) Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process Technol 87(10):899–905CrossRef
48.
Zurück zum Zitat Zhou J, Zhang Z, Li Z, Zhu T, Zhuo S (2015) One-step and template-free preparation of hierarchical porous carbons with high capacitive performance. RSC Adv 5(58):46947–46954CrossRef Zhou J, Zhang Z, Li Z, Zhu T, Zhuo S (2015) One-step and template-free preparation of hierarchical porous carbons with high capacitive performance. RSC Adv 5(58):46947–46954CrossRef
49.
Zurück zum Zitat Zhou J, Qiu Z, Zhou J, Si W, Cui H, Zhuo S (2015) Hierarchical porous carbons from alkaline poplar bark extractive-based phenolic resins for supercapacitors. Electrochim Acta 180:1007–1013CrossRef Zhou J, Qiu Z, Zhou J, Si W, Cui H, Zhuo S (2015) Hierarchical porous carbons from alkaline poplar bark extractive-based phenolic resins for supercapacitors. Electrochim Acta 180:1007–1013CrossRef
50.
Zurück zum Zitat Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497–2504CrossRef Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497–2504CrossRef
51.
Zurück zum Zitat Wang B, Qiu J, Feng H, Sakai E, Komiyama T (2016) KOH-activated nitrogen doped porous carbon nanowires with superior performance in supercapacitors. Electrochim Acta 190:229–239CrossRef Wang B, Qiu J, Feng H, Sakai E, Komiyama T (2016) KOH-activated nitrogen doped porous carbon nanowires with superior performance in supercapacitors. Electrochim Acta 190:229–239CrossRef
52.
Zurück zum Zitat Liang Y, Liang F, Zhong H, Li Z, Fu R, Wu D (2013) An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. J Mater Chem A 1(24):7000–7005CrossRef Liang Y, Liang F, Zhong H, Li Z, Fu R, Wu D (2013) An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. J Mater Chem A 1(24):7000–7005CrossRef
53.
Zurück zum Zitat H-l Fan, Ran F, X-x Zhang, H-m Song, W-x Jing, K-w Shen, L-b Kong, Kang L (2014) Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid–liquid phase separation and pyrolysis process. Electrochim Acta 138:367–375CrossRef H-l Fan, Ran F, X-x Zhang, H-m Song, W-x Jing, K-w Shen, L-b Kong, Kang L (2014) Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid–liquid phase separation and pyrolysis process. Electrochim Acta 138:367–375CrossRef
54.
Zurück zum Zitat Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Mullen K (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134(48):19532–19535CrossRef Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Mullen K (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134(48):19532–19535CrossRef
55.
Zurück zum Zitat Su F, Zhao XS, Wang Y, Zeng J, Zhou Z, Lee JY (2005) Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J Phys Chem B 109(43):20200–20206CrossRef Su F, Zhao XS, Wang Y, Zeng J, Zhou Z, Lee JY (2005) Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J Phys Chem B 109(43):20200–20206CrossRef
56.
Zurück zum Zitat Meng X, Cui H, Dong J, Zheng J, Zhu Y, Wang Z, Zhang J, Jia S, Zhao J, Zhu Z (2013) Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. J Mater Chem A 1(33):9469–9476CrossRef Meng X, Cui H, Dong J, Zheng J, Zhu Y, Wang Z, Zhang J, Jia S, Zhao J, Zhu Z (2013) Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. J Mater Chem A 1(33):9469–9476CrossRef
57.
Zurück zum Zitat Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ (2009) Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47(7):1715–1722CrossRef Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ (2009) Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47(7):1715–1722CrossRef
58.
Zurück zum Zitat Liu Y (2014) One-pot hydrothermal synthesis of nitrogen-doped hierarchically porous carbon monoliths for supercapacitors. J Porous Mat 21(6):1009–1014CrossRef Liu Y (2014) One-pot hydrothermal synthesis of nitrogen-doped hierarchically porous carbon monoliths for supercapacitors. J Porous Mat 21(6):1009–1014CrossRef
59.
Zurück zum Zitat Xiong W, Liu M, Gan L, Lv Y, Xu Z, Hao Z, Chen L (2012) Preparation of nitrogen-doped macro-/mesoporous carbon foams as electrode material for supercapacitors. Colloid Surf A 411:34–39CrossRef Xiong W, Liu M, Gan L, Lv Y, Xu Z, Hao Z, Chen L (2012) Preparation of nitrogen-doped macro-/mesoporous carbon foams as electrode material for supercapacitors. Colloid Surf A 411:34–39CrossRef
60.
Zurück zum Zitat Zhao Q, Wang X, Xia H, Liu J, Wang H, Gao J, Zhang Y, Liu J, Zhou H, Li X, Zhang S, Wang X (2015) Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors. Electrochim Acta 173:566–574CrossRef Zhao Q, Wang X, Xia H, Liu J, Wang H, Gao J, Zhang Y, Liu J, Zhou H, Li X, Zhang S, Wang X (2015) Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors. Electrochim Acta 173:566–574CrossRef
61.
Zurück zum Zitat Chen C-M, Zhang Q, Huang C-H, Zhao X-C, Zhang B-S, Kong Q-Q, Wang M-Z, Yang Y-G, Cai R, Sheng SuD (2012) Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem Commun 48(57):7149–7151CrossRef Chen C-M, Zhang Q, Huang C-H, Zhao X-C, Zhang B-S, Kong Q-Q, Wang M-Z, Yang Y-G, Cai R, Sheng SuD (2012) Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem Commun 48(57):7149–7151CrossRef
62.
Zurück zum Zitat Adelhelm P, Hu YS, Chuenchom L, Antonietti M, Smarsly BM, Maier J (2007) Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates. Adv Mater 19(22):4012–4017CrossRef Adelhelm P, Hu YS, Chuenchom L, Antonietti M, Smarsly BM, Maier J (2007) Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates. Adv Mater 19(22):4012–4017CrossRef
63.
Zurück zum Zitat Liu Z, Mi J, Yang Y, Tan X, Lv C (2014) Easy synthesis of phosphorus-incorporated three-dimensionally ordered macroporous carbons with hierarchical pores and their use as electrodes for supercapacitors. Electrochim Acta 115:206–215CrossRef Liu Z, Mi J, Yang Y, Tan X, Lv C (2014) Easy synthesis of phosphorus-incorporated three-dimensionally ordered macroporous carbons with hierarchical pores and their use as electrodes for supercapacitors. Electrochim Acta 115:206–215CrossRef
64.
Zurück zum Zitat Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Electrochem Solid State Lett 7(8):A221–A223CrossRef Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Electrochem Solid State Lett 7(8):A221–A223CrossRef
65.
Zurück zum Zitat Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T (2007) Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. J Phys Chem C 111(1):227–233CrossRef Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T (2007) Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. J Phys Chem C 111(1):227–233CrossRef
66.
Zurück zum Zitat Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75CrossRef Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75CrossRef
67.
Zurück zum Zitat Li Z, Li L, Zhu H, Liao H, Zhang H (2016) Pore size control of porous carbons using novel silica-based copolymer template and their application in supercapacitor. Mater Lett 172:179–183CrossRef Li Z, Li L, Zhu H, Liao H, Zhang H (2016) Pore size control of porous carbons using novel silica-based copolymer template and their application in supercapacitor. Mater Lett 172:179–183CrossRef
68.
Zurück zum Zitat Fang B, Bonakdarpour A, Kim M-S, Kim JH, Wilkinson DP, Yu J-S (2013) Multimodal porous carbon as a highly efficient electrode material in an electric double layer capacitor. Micropor Mesopor Mat 182:1–7CrossRef Fang B, Bonakdarpour A, Kim M-S, Kim JH, Wilkinson DP, Yu J-S (2013) Multimodal porous carbon as a highly efficient electrode material in an electric double layer capacitor. Micropor Mesopor Mat 182:1–7CrossRef
69.
Zurück zum Zitat Woo S-W, Dokko K, Nakano H, Kanamura K (2008) Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J Mater Chem 18(14):1674–1680CrossRef Woo S-W, Dokko K, Nakano H, Kanamura K (2008) Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J Mater Chem 18(14):1674–1680CrossRef
70.
Zurück zum Zitat Zhang J, Wang K, Guo S, Wang S, Liang Z, Chen Z, Fu J, Xu Q (2014) One-step carbonization synthesis of hollow carbon nanococoons with multimodal pores and their enhanced electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 6(3):2192–2198CrossRef Zhang J, Wang K, Guo S, Wang S, Liang Z, Chen Z, Fu J, Xu Q (2014) One-step carbonization synthesis of hollow carbon nanococoons with multimodal pores and their enhanced electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 6(3):2192–2198CrossRef
71.
Zurück zum Zitat Liu Y, Goebl J, Yin Y (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610–2653CrossRef Liu Y, Goebl J, Yin Y (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610–2653CrossRef
72.
Zurück zum Zitat Xue C, Tu B, Zhao D (2009) Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res 2(3):242–253CrossRef Xue C, Tu B, Zhao D (2009) Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res 2(3):242–253CrossRef
73.
Zurück zum Zitat Guo D-C, Mi J, Hao G-P, Dong W, Xiong G, Li W-C, Lu A-H (2013) Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ Sci 6(2):652–659CrossRef Guo D-C, Mi J, Hao G-P, Dong W, Xiong G, Li W-C, Lu A-H (2013) Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ Sci 6(2):652–659CrossRef
74.
Zurück zum Zitat Blas H, Save M, Pasetto P, Boissière C, Sanchez C, Charleux B (2008) Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: radial orientation of mesopore channels. Langmuir 24(22):13132–13137CrossRef Blas H, Save M, Pasetto P, Boissière C, Sanchez C, Charleux B (2008) Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: radial orientation of mesopore channels. Langmuir 24(22):13132–13137CrossRef
75.
Zurück zum Zitat Chen A, Yu Y, Li Y, Wang Y, Li Y, Li S, Xia K (2016) Synthesis of macro-mesoporous carbon materials and hollow core/mesoporous shell carbon spheres as supercapacitors. J Mater Sci 51(9):4601–4608. doi:10.1007/s10853-016-9774-1 CrossRef Chen A, Yu Y, Li Y, Wang Y, Li Y, Li S, Xia K (2016) Synthesis of macro-mesoporous carbon materials and hollow core/mesoporous shell carbon spheres as supercapacitors. J Mater Sci 51(9):4601–4608. doi:10.​1007/​s10853-016-9774-1 CrossRef
76.
Zurück zum Zitat Huang CH, Zhang Q, Chou TC, Chen CM, Su DS, Doong RA (2012) Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. ChemSusChem 5(3):563–571CrossRef Huang CH, Zhang Q, Chou TC, Chen CM, Su DS, Doong RA (2012) Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. ChemSusChem 5(3):563–571CrossRef
77.
Zurück zum Zitat Chou T-C, Huang C-H, Doong R-A, Hu C-C (2013) Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors. J Mater Chem A 1(8):2886–2895CrossRef Chou T-C, Huang C-H, Doong R-A, Hu C-C (2013) Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors. J Mater Chem A 1(8):2886–2895CrossRef
78.
Zurück zum Zitat Wen X, Zhang D, Yan T, Zhang J, Shi L (2013) Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J Mater Chem A 1(39):12334–12344CrossRef Wen X, Zhang D, Yan T, Zhang J, Shi L (2013) Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J Mater Chem A 1(39):12334–12344CrossRef
79.
Zurück zum Zitat Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores. ACS Nano 7(8):6899–6905CrossRef Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores. ACS Nano 7(8):6899–6905CrossRef
80.
Zurück zum Zitat Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812CrossRef Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812CrossRef
81.
Zurück zum Zitat Luo H-M, Chen H, Chen Y-Z, Li P, Zhang J-Q, Zhao X (2016) Simple synthesis of porous carbon materials for high-performance supercapacitors. J Appl Electrochem 46(6):703–712CrossRef Luo H-M, Chen H, Chen Y-Z, Li P, Zhang J-Q, Zhao X (2016) Simple synthesis of porous carbon materials for high-performance supercapacitors. J Appl Electrochem 46(6):703–712CrossRef
82.
Zurück zum Zitat Chen G, Zhai W, Wang Z, Yu J, Wang F, Zhao Y, Li G (2015) Fabrication and supercapacitive properties of hierarchical porous carbon from polyacrylonitrile. Mater Res Bull 72:204–210CrossRef Chen G, Zhai W, Wang Z, Yu J, Wang F, Zhao Y, Li G (2015) Fabrication and supercapacitive properties of hierarchical porous carbon from polyacrylonitrile. Mater Res Bull 72:204–210CrossRef
83.
Zurück zum Zitat Gutiérrez MC, Carriazo D, Tamayo A, Jiménez R, Picó F, Rojo JM, Ferrer ML, del Monte F (2011) Deep-eutectic-solvent-assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities. Chem-Eur J 17(38):10533–10537CrossRef Gutiérrez MC, Carriazo D, Tamayo A, Jiménez R, Picó F, Rojo JM, Ferrer ML, del Monte F (2011) Deep-eutectic-solvent-assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities. Chem-Eur J 17(38):10533–10537CrossRef
84.
Zurück zum Zitat Carriazo D, Gutiérrez MC, Picó F, Rojo JM, Fierro JLG, Ferrer ML, del Monte F (2012) Phosphate-functionalized carbon monoliths from deep eutectic solvents and their use as monolithic electrodes in supercapacitors. ChemSusChem 5(8):1405–1409CrossRef Carriazo D, Gutiérrez MC, Picó F, Rojo JM, Fierro JLG, Ferrer ML, del Monte F (2012) Phosphate-functionalized carbon monoliths from deep eutectic solvents and their use as monolithic electrodes in supercapacitors. ChemSusChem 5(8):1405–1409CrossRef
85.
Zurück zum Zitat Deng M-J, Song C-Z, Ho P-J, Wang C-C, Chen J-M, Lu K-T (2013) Three-dimensionally ordered macroporous Cu2O/Ni inverse opal electrodes for electrochemical supercapacitors. Phys Chem Chem Phys 15(20):7479–7483CrossRef Deng M-J, Song C-Z, Ho P-J, Wang C-C, Chen J-M, Lu K-T (2013) Three-dimensionally ordered macroporous Cu2O/Ni inverse opal electrodes for electrochemical supercapacitors. Phys Chem Chem Phys 15(20):7479–7483CrossRef
86.
Zurück zum Zitat Sawangphruk M, Limtrakul J (2012) Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Mater Lett 68:230–233CrossRef Sawangphruk M, Limtrakul J (2012) Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Mater Lett 68:230–233CrossRef
87.
Zurück zum Zitat Li Y, Huang K, Liu S, Yao Z, Zhuang S (2010) Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors. J Solid State Electr 15(3):587–592CrossRef Li Y, Huang K, Liu S, Yao Z, Zhuang S (2010) Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors. J Solid State Electr 15(3):587–592CrossRef
88.
Zurück zum Zitat Kim J-H, Kang SH, Zhu K, Kim JY, Neale NR, Frank AJ (2011) Ni-NiO core-shell inverse opal electrodes for supercapacitors. Chem Commun 47(18):5214–5216CrossRef Kim J-H, Kang SH, Zhu K, Kim JY, Neale NR, Frank AJ (2011) Ni-NiO core-shell inverse opal electrodes for supercapacitors. Chem Commun 47(18):5214–5216CrossRef
89.
Zurück zum Zitat Deng M-J, Ho P-J, Song C-Z, Chen S-A, Lee J-F, Chen J-M, Lu K-T (2013) Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors. Energy Environ Sci 6(7):2178–2185CrossRef Deng M-J, Ho P-J, Song C-Z, Chen S-A, Lee J-F, Chen J-M, Lu K-T (2013) Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors. Energy Environ Sci 6(7):2178–2185CrossRef
90.
Zurück zum Zitat Tholkappiyan R, Naveen AN, Sumithra S, Vishista K (2015) Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci 50(17):5833–5843. doi:10.1007/s10853-015-9132-8 CrossRef Tholkappiyan R, Naveen AN, Sumithra S, Vishista K (2015) Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci 50(17):5833–5843. doi:10.​1007/​s10853-015-9132-8 CrossRef
91.
Zurück zum Zitat Naveen AN, Selladurai S (2016) Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application. Ionics 22(8):1471–1483CrossRef Naveen AN, Selladurai S (2016) Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application. Ionics 22(8):1471–1483CrossRef
92.
Zurück zum Zitat Wang K, Wu H, Meng Y, Wei Z (2014) Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 10(1):14–31CrossRef Wang K, Wu H, Meng Y, Wei Z (2014) Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 10(1):14–31CrossRef
93.
Zurück zum Zitat Liu J, Zhou M, Fan L-Z, Li P, Qu X (2010) Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochim Acta 55(20):5819–5822CrossRef Liu J, Zhou M, Fan L-Z, Li P, Qu X (2010) Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochim Acta 55(20):5819–5822CrossRef
94.
Zurück zum Zitat Cho S, Shin K-H, Jang J (2013) Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Appl Mater Interfaces 5(18):9186–9193CrossRef Cho S, Shin K-H, Jang J (2013) Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Appl Mater Interfaces 5(18):9186–9193CrossRef
95.
Zurück zum Zitat Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22(7):3044–3052CrossRef Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22(7):3044–3052CrossRef
96.
Zurück zum Zitat T-c Chou, Doong R-a Hu, C-c Zhang B, Su DS (2014) Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors. ChemSusChem 7(3):841–847CrossRef T-c Chou, Doong R-a Hu, C-c Zhang B, Su DS (2014) Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors. ChemSusChem 7(3):841–847CrossRef
97.
Zurück zum Zitat Li J, Ren Y, Wang S, Ren Z, Yu J (2016) Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts. Appl Mater Today 3:63–72CrossRef Li J, Ren Y, Wang S, Ren Z, Yu J (2016) Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts. Appl Mater Today 3:63–72CrossRef
98.
Zurück zum Zitat Xie L, Su F, Xie L, Li X, Liu Z, Kong Q, Guo X, Zhang Y, Wan L, Li K (2015) Self-assembled 3d graphene-based aerogel with co3o4 nanoparticles as high-performance asymmetric supercapacitor electrode. Chemsuschem 8(17):2917–2926CrossRef Xie L, Su F, Xie L, Li X, Liu Z, Kong Q, Guo X, Zhang Y, Wan L, Li K (2015) Self-assembled 3d graphene-based aerogel with co3o4 nanoparticles as high-performance asymmetric supercapacitor electrode. Chemsuschem 8(17):2917–2926CrossRef
99.
Zurück zum Zitat Chen S, Duan J, Tang Y, Zhang Qiao S (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem-Eur J 19(22):7118–7124CrossRef Chen S, Duan J, Tang Y, Zhang Qiao S (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem-Eur J 19(22):7118–7124CrossRef
100.
Zurück zum Zitat Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330CrossRef Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330CrossRef
101.
Zurück zum Zitat Zhou X, Li L, Dong S, Chen X, Han P, Xu H, Yao J, Shang C, Liu Z, Cui G (2011) A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J Solid State Electr 16(3):877–882CrossRef Zhou X, Li L, Dong S, Chen X, Han P, Xu H, Yao J, Shang C, Liu Z, Cui G (2011) A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J Solid State Electr 16(3):877–882CrossRef
102.
Zurück zum Zitat Woo S-W, Dokko K, Nakano H, Kanamura K (2009) Incorporation of polyaniline into macropores of three-dimensionally ordered macroporous carbon electrode for electrochemical capacitors. J Power Sources 190(2):596–600CrossRef Woo S-W, Dokko K, Nakano H, Kanamura K (2009) Incorporation of polyaniline into macropores of three-dimensionally ordered macroporous carbon electrode for electrochemical capacitors. J Power Sources 190(2):596–600CrossRef
103.
Zurück zum Zitat Woo S-W, Dokko K, Kanamura K (2008) Composite electrode composed of bimodal porous carbon and polypyrrole for electrochemical capacitors. J Power Sources 185(2):1589–1593CrossRef Woo S-W, Dokko K, Kanamura K (2008) Composite electrode composed of bimodal porous carbon and polypyrrole for electrochemical capacitors. J Power Sources 185(2):1589–1593CrossRef
104.
Zurück zum Zitat Zhang LL, Li S, Zhang J, Guo P, Zheng J, Zhao XS (2010) Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater 22(3):1195–1202CrossRef Zhang LL, Li S, Zhang J, Guo P, Zheng J, Zhao XS (2010) Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater 22(3):1195–1202CrossRef
105.
Zurück zum Zitat Lu X, Hu Y, Wang L, Guo Q, Chen S, Chen S, Hou H, Song Y (2016) Macroporous carbon/nitrogen-doped carbon nanotubes/polyaniline nanocomposites and their application in supercapacitors. Electrochim Acta 189:158–165CrossRef Lu X, Hu Y, Wang L, Guo Q, Chen S, Chen S, Hou H, Song Y (2016) Macroporous carbon/nitrogen-doped carbon nanotubes/polyaniline nanocomposites and their application in supercapacitors. Electrochim Acta 189:158–165CrossRef
106.
Zurück zum Zitat Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y (2014) Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6(18):16312–16319CrossRef Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y (2014) Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6(18):16312–16319CrossRef
107.
Zurück zum Zitat Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172CrossRef Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172CrossRef
108.
Zurück zum Zitat Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578CrossRef Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578CrossRef
109.
Zurück zum Zitat He S, Hu X, Chen S, Hu H, Hanif M, Hou H (2012) Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors. J Mater Chem 22(11):5114–5120CrossRef He S, Hu X, Chen S, Hu H, Hanif M, Hou H (2012) Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors. J Mater Chem 22(11):5114–5120CrossRef
110.
Zurück zum Zitat Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22(21):4592–4597CrossRef Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22(21):4592–4597CrossRef
111.
Zurück zum Zitat Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6(21):19318–19326CrossRef Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6(21):19318–19326CrossRef
112.
Zurück zum Zitat Gong C, Huang M, Zhou P, Sun Z, Fan L, Lin J, Wu J (2016) Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Appl Surf Sci 362:469–476CrossRef Gong C, Huang M, Zhou P, Sun Z, Fan L, Lin J, Wu J (2016) Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Appl Surf Sci 362:469–476CrossRef
113.
Zurück zum Zitat Cao Y, Li W, Xu K, Zhang Y, Ji T, Zou R, Yang J, Qin Z, Hu J (2014) MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. J Mater Chem A 2(48):20723–20728CrossRef Cao Y, Li W, Xu K, Zhang Y, Ji T, Zou R, Yang J, Qin Z, Hu J (2014) MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. J Mater Chem A 2(48):20723–20728CrossRef
114.
Zurück zum Zitat Tang Z, C-h Tang, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22(6):1272–1278CrossRef Tang Z, C-h Tang, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22(6):1272–1278CrossRef
115.
Zurück zum Zitat Ye S, Feng J, Wu P (2013) Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl Mater Interfaces 5(15):7122–7129CrossRef Ye S, Feng J, Wu P (2013) Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl Mater Interfaces 5(15):7122–7129CrossRef
116.
Zurück zum Zitat L-b Jiang, X-z Yuan, Liang J, Zhang J, Wang H, G-m Zeng (2016) Nanostructured core-shell electrode materials for electrochemical capacitors. J Power Sources 331:408–425CrossRef L-b Jiang, X-z Yuan, Liang J, Zhang J, Wang H, G-m Zeng (2016) Nanostructured core-shell electrode materials for electrochemical capacitors. J Power Sources 331:408–425CrossRef
117.
Zurück zum Zitat Eskusson J, Jänes A, Kikas A, Matisen L, Lust E (2011) Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. J Power Sources 196(8):4109–4116CrossRef Eskusson J, Jänes A, Kikas A, Matisen L, Lust E (2011) Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. J Power Sources 196(8):4109–4116CrossRef
118.
Zurück zum Zitat Candelaria SL, Garcia BB, Liu D, Cao G (2012) Nitrogen modification of highly porous carbon for improved supercapacitor performance. J Mater Chem 22(19):9884–9889CrossRef Candelaria SL, Garcia BB, Liu D, Cao G (2012) Nitrogen modification of highly porous carbon for improved supercapacitor performance. J Mater Chem 22(19):9884–9889CrossRef
119.
Zurück zum Zitat Zhang X, Wang X, Bai Y, Wang X, Su J (2012) Supercapacitive behaviors of hierarchically porous carbons prepared by metal oxide/surfactant templates. J Electrochem Soc 159(4):A431CrossRef Zhang X, Wang X, Bai Y, Wang X, Su J (2012) Supercapacitive behaviors of hierarchically porous carbons prepared by metal oxide/surfactant templates. J Electrochem Soc 159(4):A431CrossRef
120.
Zurück zum Zitat Peng H, Ma G, Sun K, Mu J, Lei Z (2014) One-step preparation of ultrathin nitrogen-doped carbon nanosheets with ultrahigh pore volume for high-performance supercapacitors. J Mater Chem A 2(41):17297–17301CrossRef Peng H, Ma G, Sun K, Mu J, Lei Z (2014) One-step preparation of ultrathin nitrogen-doped carbon nanosheets with ultrahigh pore volume for high-performance supercapacitors. J Mater Chem A 2(41):17297–17301CrossRef
121.
Zurück zum Zitat Yun S, Kang S-O, Park S, Park HS (2014) CO2-activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior. Nanoscale 6(10):5296–5302CrossRef Yun S, Kang S-O, Park S, Park HS (2014) CO2-activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior. Nanoscale 6(10):5296–5302CrossRef
122.
Zurück zum Zitat Ning X, Zhong W, Li S, Wang Y, Yang W (2014) High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A 2(23):8859–8867CrossRef Ning X, Zhong W, Li S, Wang Y, Yang W (2014) High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A 2(23):8859–8867CrossRef
123.
Zurück zum Zitat Xiong Z, Liao C, Wang X (2014) A self-assembled macroporous coagulation graphene network with high specific capacitance for supercapacitor applications. J Mater Chem A 2(45):19141–19144CrossRef Xiong Z, Liao C, Wang X (2014) A self-assembled macroporous coagulation graphene network with high specific capacitance for supercapacitor applications. J Mater Chem A 2(45):19141–19144CrossRef
124.
Zurück zum Zitat Dubal DP, Patil SV, Gund GS, Lokhande CD (2013) Polyaniline–polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. J Alloy Compd 552:240–247CrossRef Dubal DP, Patil SV, Gund GS, Lokhande CD (2013) Polyaniline–polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. J Alloy Compd 552:240–247CrossRef
Metadaten
Titel
Review of macroporous materials as electrochemical supercapacitor electrodes
verfasst von
Yingxi Zhang
Shuai Yu
Gaobo Lou
Yalun Shen
Hao Chen
Zhehong Shen
Shuyan Zhao
Jinzhi Zhang
Shigan Chai
Qichao Zou
Publikationsdatum
09.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0955-3

Weitere Artikel der Ausgabe 19/2017

Journal of Materials Science 19/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.