Skip to main content

2025 | OriginalPaper | Buchkapitel

2. Review of Mobile Phone Data in Travel Characteristics Recognition

verfasst von : Fei Yang, Yanchen Wang, Yudong Guo, Haihang Jiang, Zhenxing Yao

Erschienen in: Reliability Evaluation and Its Influence on Traffic Application

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a systematic review of the evolutionary history and developmental stages of mobile phone signaling data analysis technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Calabrese F, Di Lorenzo G, Liu L et al (2011) Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Comput 10(4):36–44 Calabrese F, Di Lorenzo G, Liu L et al (2011) Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Comput 10(4):36–44
2.
Zurück zum Zitat Tsui SYA, SHALABY AS (2006) Enhanced system for link and mode identification for personal travel surveys based on global positioning systems. Transp Res Rec: J Transp Res Board 1972(1): 38–45 Tsui SYA, SHALABY AS (2006) Enhanced system for link and mode identification for personal travel surveys based on global positioning systems. Transp Res Rec: J Transp Res Board 1972(1): 38–45
3.
Zurück zum Zitat Schlaich J, Otterstatter T, Friedrich M (2010) Generating trajectories from mobile phone data. In: 89th annual meeting compendium of papers, J Transp Res Board Natl Acad Schlaich J, Otterstatter T, Friedrich M (2010) Generating trajectories from mobile phone data. In: 89th annual meeting compendium of papers, J Transp Res Board Natl Acad
4.
Zurück zum Zitat Wang MH, Schrock SD, Vander Broek N et al (2013) Estimating dynamic origin-destination data and travel demand using cell phone network data. Int J Intell Transp Syst Res 11(2): 76-86 Wang MH, Schrock SD, Vander Broek N et al (2013) Estimating dynamic origin-destination data and travel demand using cell phone network data. Int J Intell Transp Syst Res 11(2): 76-86
5.
Zurück zum Zitat Wu YZ (2014) Dynamic OD acquisition method based on mobile phone location information and travel survey. Beijing Jiaotong University Wu YZ (2014) Dynamic OD acquisition method based on mobile phone location information and travel survey. Beijing Jiaotong University
6.
Zurück zum Zitat Song L (2015) Research on traffic origin-destination distribution based on cell phone data. Southeast University Song L (2015) Research on traffic origin-destination distribution based on cell phone data. Southeast University
7.
Zurück zum Zitat Zheng Y (2015) Trajectory data mining: An overview. ACMTrans Intell Syst Technol 6(3): 1–41 Zheng Y (2015) Trajectory data mining: An overview. ACMTrans Intell Syst Technol 6(3): 1–41
8.
Zurück zum Zitat Ni L, Wang XC, Chen XM (2018) A spatial econometric model for travel flow analysis and real-world applications with massive mobile phone data. Transp Res Part C: Emerg Technol 86: 510–526 Ni L, Wang XC, Chen XM (2018) A spatial econometric model for travel flow analysis and real-world applications with massive mobile phone data. Transp Res Part C: Emerg Technol 86: 510–526
9.
Zurück zum Zitat Yang F, Jiang HH, Yao ZX et al (2021) Evaluation of activity location recognition using cellular signaling data. J Southwest Jiaotong Univ, 56(5): 928–936 Yang F, Jiang HH, Yao ZX et al (2021) Evaluation of activity location recognition using cellular signaling data. J Southwest Jiaotong Univ, 56(5): 928–936
10.
Zurück zum Zitat Poonawala H, Kolar V, Blandin S et al (2016) Singapore in motion: Insights on public transport service level through farecard and mobile data analytics. In: The 22nd ACM SIGKDD international conference Poonawala H, Kolar V, Blandin S et al (2016) Singapore in motion: Insights on public transport service level through farecard and mobile data analytics. In: The 22nd ACM SIGKDD international conference
11.
Zurück zum Zitat Wang H, Calabrese F, Lorenzo GD et al (2010) Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: International IEEE conference on intelligent transportation systems Wang H, Calabrese F, Lorenzo GD et al (2010) Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: International IEEE conference on intelligent transportation systems
12.
Zurück zum Zitat Alexander L, Jiang S, Murga M et al (2015) Origin-destination trips by purpose and time of day inferred from mobile phone data. Transp Res Part C: Emerg Technol 58: 240–250 Alexander L, Jiang S, Murga M et al (2015) Origin-destination trips by purpose and time of day inferred from mobile phone data. Transp Res Part C: Emerg Technol 58: 240–250
13.
Zurück zum Zitat Chen C, Bian L, Ma J (2014) From traces to trajectories: How well can we guess activity locations from mobile phone traces? Transp Res Part C: Emerg Technol 46:326–337 Chen C, Bian L, Ma J (2014) From traces to trajectories: How well can we guess activity locations from mobile phone traces? Transp Res Part C: Emerg Technol 46:326–337
14.
Zurück zum Zitat Wu ZX (2019) Travel chain estimation based on cell phone data. Urban Transp China 17(3):11–18 Wu ZX (2019) Travel chain estimation based on cell phone data. Urban Transp China 17(3):11–18
15.
Zurück zum Zitat Jiang HH, Yang F, Zhu X et al (2022) Improved F-DBSCAN for trip end identification using mobile phone data in combination with base station density. J Adv Transp 2022:1–17 Jiang HH, Yang F, Zhu X et al (2022) Improved F-DBSCAN for trip end identification using mobile phone data in combination with base station density. J Adv Transp 2022:1–17
16.
Zurück zum Zitat Bernstein D, Kornhauser AL (1996) An introduction to map matching for personal navigation assistants Bernstein D, Kornhauser AL (1996) An introduction to map matching for personal navigation assistants
17.
Zurück zum Zitat White CE, Bernstein D, Kornhauser AL (2000) Some map matching algorithms for personal navigation assistants. Transp Res Part C: Emerg Technol 8(1–6):91–108 White CE, Bernstein D, Kornhauser AL (2000) Some map matching algorithms for personal navigation assistants. Transp Res Part C: Emerg Technol 8(1–6):91–108
18.
Zurück zum Zitat Taylor G, Blewitt G, Steup D et al (2001) Road reduction filtering for GPS-GIS navigation. Trans GIS 5(3):193–207 Taylor G, Blewitt G, Steup D et al (2001) Road reduction filtering for GPS-GIS navigation. Trans GIS 5(3):193–207
19.
Zurück zum Zitat Yin HB, Wolfson O (2004) A weight-based map matching method in moving objects databases. In: 16th International conference on scientific and statistical database management. Santorini Island, Greece, pp 437–438 Yin HB, Wolfson O (2004) A weight-based map matching method in moving objects databases. In: 16th International conference on scientific and statistical database management. Santorini Island, Greece, pp 437–438
20.
Zurück zum Zitat Blazquez CA, Vonderohe AP (2005) Simple map-matching algorithm applied to intelligent winter maintenance vehicle data. Transp Res Rec: J Transp Res Board 1935(1):68–76 Blazquez CA, Vonderohe AP (2005) Simple map-matching algorithm applied to intelligent winter maintenance vehicle data. Transp Res Rec: J Transp Res Board 1935(1):68–76
21.
Zurück zum Zitat Quddus MA, Noland RB, Ochieng WY (2006) A high accuracy fuzzy logic based map matching algorithm for road transport. J Intell Transp Syst 10(3):103–115 Quddus MA, Noland RB, Ochieng WY (2006) A high accuracy fuzzy logic based map matching algorithm for road transport. J Intell Transp Syst 10(3):103–115
22.
Zurück zum Zitat Pink O, Hummel B (2008) A statistical approach to map matching using road network geometry, topology and vehicular motion constraints. In: 11th International IEEE conference on intelligent transportation systems. Beijing, China, pp 862–867 Pink O, Hummel B (2008) A statistical approach to map matching using road network geometry, topology and vehicular motion constraints. In: 11th International IEEE conference on intelligent transportation systems. Beijing, China, pp 862–867
23.
Zurück zum Zitat Obradovic D, Lenz H, Schupfner M (2006) Fusion of map and sensor data in a modern car navigation system. J VLSI Signal Proc Syst Signal Image Video Technol 45(1–2):111–122 Obradovic D, Lenz H, Schupfner M (2006) Fusion of map and sensor data in a modern car navigation system. J VLSI Signal Proc Syst Signal Image Video Technol 45(1–2):111–122
24.
Zurück zum Zitat Wu C, Thai J, Yadlowsky S et al (2015) Cell path: fusion of cellular and traffic sensor data for route flow estimation via convex optimization. Transp Res Procedia 7:212–232 Wu C, Thai J, Yadlowsky S et al (2015) Cell path: fusion of cellular and traffic sensor data for route flow estimation via convex optimization. Transp Res Procedia 7:212–232
25.
Zurück zum Zitat Bonnetain L, Furno A, El Faouzi NE et al (2021) TRANSIT: Fine-grained human mobility trajectory inference at scale with mobile network signaling data. Transp Res Part C: Emerg Technol 130: 103257 Bonnetain L, Furno A, El Faouzi NE et al (2021) TRANSIT: Fine-grained human mobility trajectory inference at scale with mobile network signaling data. Transp Res Part C: Emerg Technol 130: 103257
26.
Zurück zum Zitat Yang F (2013) Link travel speed data capture technology based on cellular handoff information: method, algorithm and evaluation. Science Press, Beijing Yang F (2013) Link travel speed data capture technology based on cellular handoff information: method, algorithm and evaluation. Science Press, Beijing
27.
Zurück zum Zitat Lai JH (2014) Research on data mining and analysis in transportation based on mobile communication location. Beijing University of Technology Lai JH (2014) Research on data mining and analysis in transportation based on mobile communication location. Beijing University of Technology
28.
Zurück zum Zitat Lv M, Chen L, Shen Y et al (2015) Measuring cell-id trajectory similarity for mobile phone route classification. Knowl-Based Syst 89:181–191 Lv M, Chen L, Shen Y et al (2015) Measuring cell-id trajectory similarity for mobile phone route classification. Knowl-Based Syst 89:181–191
29.
Zurück zum Zitat Zhou CY (2016) On the cellular signaling based transport trajectory matching technologies in urban area. Southwest Jiaotong University Zhou CY (2016) On the cellular signaling based transport trajectory matching technologies in urban area. Southwest Jiaotong University
30.
Zurück zum Zitat Li S, Li G, Cheng Y, Ran B (2020) Urban arterial traffic status detection using cellular data without cellphone GPS information. Transp Res Part C: Emerg Technol 114:446–462 Li S, Li G, Cheng Y, Ran B (2020) Urban arterial traffic status detection using cellular data without cellphone GPS information. Transp Res Part C: Emerg Technol 114:446–462
31.
Zurück zum Zitat Guo Y, Yang F, Jin PJ et al (2022) Vehicle travel path recognition in urban dense road network environments by using mobile phone data. Transportmetrica A Transport Sci 18(3): 1496–1516 Guo Y, Yang F, Jin PJ et al (2022) Vehicle travel path recognition in urban dense road network environments by using mobile phone data. Transportmetrica A Transport Sci 18(3): 1496–1516
32.
Zurück zum Zitat Sohn T, Varshavsky A, Lamarca A et al (2006) Mobility detection using everyday gsm traces. In: Dourish P, Friday A UbiComp: ubiquitous computing: Berlin, Heidelberg: Springer Berlin Heidelberg, 4206: 212–224 Sohn T, Varshavsky A, Lamarca A et al (2006) Mobility detection using everyday gsm traces. In: Dourish P, Friday A UbiComp: ubiquitous computing: Berlin, Heidelberg: Springer Berlin Heidelberg, 4206: 212–224
33.
Zurück zum Zitat Zhang B (2010) Research on trip modal split of OD survey based on the cellular positioning system. Beijing Jiaotong University Zhang B (2010) Research on trip modal split of OD survey based on the cellular positioning system. Beijing Jiaotong University
34.
Zurück zum Zitat Xu D, Song G, Gao P et al (2011) Transportation modes identification from mobile phone data using probabilistic models. In: Tang J, King I, Chen L et al Advanced data mining and applications: Berlin, Heidelberg: Springer Berlin Heidelberg, 7121, 359–371 Xu D, Song G, Gao P et al (2011) Transportation modes identification from mobile phone data using probabilistic models. In: Tang J, King I, Chen L et al Advanced data mining and applications: Berlin, Heidelberg: Springer Berlin Heidelberg, 7121, 359–371
35.
Zurück zum Zitat Ho KC, Chan YT (1993) Solution and performance analysis of geolocation by TDOA. IEEE Trans on Aerosp and Electron Syst 29(4):1311–1322 Ho KC, Chan YT (1993) Solution and performance analysis of geolocation by TDOA. IEEE Trans on Aerosp and Electron Syst 29(4):1311–1322
36.
Zurück zum Zitat Danafar S, Piorkowski M, Krysczcuk K (2017) Bayesian framework for mobility pattern discovery using mobile network events. In: 25th European signal processing conference (EUSIPCO). IEEE, Kos, Greece, pp 1070–1074 Danafar S, Piorkowski M, Krysczcuk K (2017) Bayesian framework for mobility pattern discovery using mobile network events. In: 25th European signal processing conference (EUSIPCO). IEEE, Kos, Greece, pp 1070–1074
37.
Zurück zum Zitat Zhong SQ, Deng RF, Deng HP et al (2020) Recognition of traffic mode of mobile phone data based on the combination of point of interest data and navigation data. Acta Scientiarum Naturalium Univ Sunyatseni 59(3):10 Zhong SQ, Deng RF, Deng HP et al (2020) Recognition of traffic mode of mobile phone data based on the combination of point of interest data and navigation data. Acta Scientiarum Naturalium Univ Sunyatseni 59(3):10
38.
Zurück zum Zitat Lai WK, Kuo TH, Chen CH (2016) Vehicle speed estimation and forecasting methods based on cellular floating vehicle data. Appl Sci 6(2):47–47 Lai WK, Kuo TH, Chen CH (2016) Vehicle speed estimation and forecasting methods based on cellular floating vehicle data. Appl Sci 6(2):47–47
39.
Zurück zum Zitat Li S, Li GF, Cheng Y, Ran B (2020) Urban arterial traffic status detection using cellular data without cellphone GPS information. Transp Res Part C: Emerg Technol 114:446–462 Li S, Li GF, Cheng Y, Ran B (2020) Urban arterial traffic status detection using cellular data without cellphone GPS information. Transp Res Part C: Emerg Technol 114:446–462
40.
Zurück zum Zitat Xu D, Wei C, Peng P et al (2020) GE-GAN: a novel deep learning framework for road traffic state estimation. Transp Res Part C: Emerg Technol 117:102635 Xu D, Wei C, Peng P et al (2020) GE-GAN: a novel deep learning framework for road traffic state estimation. Transp Res Part C: Emerg Technol 117:102635
41.
Zurück zum Zitat Yang Z, Zheng J, and Yu W et al (2024) Car-following behavior based on LiDAR trajectory data at urban intersections. IEEE Syst J 18(1):438–449 Yang Z, Zheng J, and Yu W et al (2024) Car-following behavior based on LiDAR trajectory data at urban intersections. IEEE Syst J 18(1):438–449
42.
Zurück zum Zitat Deng Y, Cao Q, Ren G et al (2023) Vehicle trajectory reconstruction incorporating probe and fixed sensor data. J Transp Eng Part A: Syst (9):149 Deng Y, Cao Q, Ren G et al (2023) Vehicle trajectory reconstruction incorporating probe and fixed sensor data. J Transp Eng Part A: Syst (9):149
Metadaten
Titel
Review of Mobile Phone Data in Travel Characteristics Recognition
verfasst von
Fei Yang
Yanchen Wang
Yudong Guo
Haihang Jiang
Zhenxing Yao
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-7950-5_2