Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 9/2017

26.07.2017 | Review Article

Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting

verfasst von: Mohamad Shukri Zakaria, Farzad Ismail, Masaaki Tamagawa, Ahmad Fazli Abdul Aziz, Surjatin Wiriadidjaja, Adi Azrif Basri, Kamarul Arifin Ahmad

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Even though the mechanical heart valve (MHV) has been used routinely in clinical practice for over 60 years, the occurrence of serious complications such as blood clotting remains to be elucidated. This paper reviews the progress that has been made over the years in terms of numerical simulation method and the contribution of abnormal flow toward blood clotting from MHVs in the aortic position. It is believed that this review would likely be of interest to some readers in various disciplines, such as engineers, scientists, mathematicians and surgeons, to understand the phenomenon of blood clotting in MHVs through computational fluid dynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Akutsu T, Matsumoto A, Takahashi K (2011) In vitro study of the correlation between the aortic flow field affected by the bileaflet mechanical valves and coronary circulation. In: 5th European conference of the international federation for medical and biological engineering. Springer, pp 769–772 Akutsu T, Matsumoto A, Takahashi K (2011) In vitro study of the correlation between the aortic flow field affected by the bileaflet mechanical valves and coronary circulation. In: 5th European conference of the international federation for medical and biological engineering. Springer, pp 769–772
2.
Zurück zum Zitat Alauzet F, Fabrèges B, Fernández MA, Landajuela M (2016) Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput Methods Appl Mech Eng 301:300–335CrossRef Alauzet F, Fabrèges B, Fernández MA, Landajuela M (2016) Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput Methods Appl Mech Eng 301:300–335CrossRef
3.
Zurück zum Zitat Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688PubMedCrossRef Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688PubMedCrossRef
4.
Zurück zum Zitat Aliabadi A (2013) Numerical simulation of fluid-structure interaction for tilting-disk mechanical heart valves. Ph.D. thesis Aliabadi A (2013) Numerical simulation of fluid-structure interaction for tilting-disk mechanical heart valves. Ph.D. thesis
5.
Zurück zum Zitat Annerel S, Claessens T, Degroote J, Segers P, Vierendeels J (2014a) Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments. Med Eng Phys 36(8):1014–23PubMedCrossRef Annerel S, Claessens T, Degroote J, Segers P, Vierendeels J (2014a) Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments. Med Eng Phys 36(8):1014–23PubMedCrossRef
6.
Zurück zum Zitat Annerel S, Claessens T, Taelman L, Degroote J, Van Nooten G, Verdonck P, Segers P, Vierendeels J (2014b) Influence of valve size, orientation and downstream geometry of an aortic BMHV on leaflet motion and clinically used valve performance parameters. Ann Biomed Eng 43(6):1370–1384PubMedCrossRef Annerel S, Claessens T, Taelman L, Degroote J, Van Nooten G, Verdonck P, Segers P, Vierendeels J (2014b) Influence of valve size, orientation and downstream geometry of an aortic BMHV on leaflet motion and clinically used valve performance parameters. Ann Biomed Eng 43(6):1370–1384PubMedCrossRef
7.
Zurück zum Zitat Annerel S, Degroote J, Claessens T, Dahl SK, Skallerud B, Hellevik LR, Van Ransbeeck P, Segers P, Verdonck P, Vierendeels J (2012) A fast strong coupling algorithm for the partitioned fluid-structure interaction simulation of BMHVs. Comput Methods Biomech Biomed Eng 15(12):1281–1312CrossRef Annerel S, Degroote J, Claessens T, Dahl SK, Skallerud B, Hellevik LR, Van Ransbeeck P, Segers P, Verdonck P, Vierendeels J (2012) A fast strong coupling algorithm for the partitioned fluid-structure interaction simulation of BMHVs. Comput Methods Biomech Biomed Eng 15(12):1281–1312CrossRef
8.
Zurück zum Zitat Anupindi K, Delorme Y, Shetty DA, Frankel SH (2013) A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics. J Comput Phys 254:200–218CrossRef Anupindi K, Delorme Y, Shetty DA, Frankel SH (2013) A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics. J Comput Phys 254:200–218CrossRef
9.
Zurück zum Zitat Appanaboyina SFM, Lohne R, Putman CM, R CJ (2008) Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Num Methods Fluids 57:475–493CrossRef Appanaboyina SFM, Lohne R, Putman CM, R CJ (2008) Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Num Methods Fluids 57:475–493CrossRef
10.
Zurück zum Zitat Astorino M, Gerbeau JF, Pantz O, Traoré KF (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46):3603–3612CrossRef Astorino M, Gerbeau JF, Pantz O, Traoré KF (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46):3603–3612CrossRef
11.
Zurück zum Zitat Azwadi N, Shukri ZM, Afiq Witri MY (2012) Numerical investigation of 2D lid driven cavity using smoothed particle hydrodynamics (SPH) method. Am Inst Phys Conf Ser 1440:789–798 Azwadi N, Shukri ZM, Afiq Witri MY (2012) Numerical investigation of 2D lid driven cavity using smoothed particle hydrodynamics (SPH) method. Am Inst Phys Conf Ser 1440:789–798
12.
Zurück zum Zitat Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluids 33(3):375–404CrossRef Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluids 33(3):375–404CrossRef
13.
Zurück zum Zitat Bang JS, Yoo SM, Kim CN (2006) Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO J 52(3):234–242PubMedCrossRef Bang JS, Yoo SM, Kim CN (2006) Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO J 52(3):234–242PubMedCrossRef
14.
Zurück zum Zitat Bark DL, Vahabi H, Bui H, Movafaghi S, Moore B, Kota AK, Popat K, Dasi LP (2017) Hemodynamic performance and thrombogenic properties of a superhydrophobic bileaflet mechanical heart valve. Ann Biomed Eng 45(2):452–463PubMedCrossRef Bark DL, Vahabi H, Bui H, Movafaghi S, Moore B, Kota AK, Popat K, Dasi LP (2017) Hemodynamic performance and thrombogenic properties of a superhydrophobic bileaflet mechanical heart valve. Ann Biomed Eng 45(2):452–463PubMedCrossRef
15.
Zurück zum Zitat Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, Schulz-menger J, Knobelsdorff-brenkenhoff FV (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466PubMedCrossRef Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, Schulz-menger J, Knobelsdorff-brenkenhoff FV (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466PubMedCrossRef
16.
Zurück zum Zitat Bavo AM, Rocatello G, Iannaccone F, Degroote J, Vierendeels J, Segers P (2016) Fluid-structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian–Eulerian techniques for the mesh representation. Plos One 11(4):1–17CrossRef Bavo AM, Rocatello G, Iannaccone F, Degroote J, Vierendeels J, Segers P (2016) Fluid-structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian–Eulerian techniques for the mesh representation. Plos One 11(4):1–17CrossRef
17.
Zurück zum Zitat Biasetti J, Hussain F, Gasser TC (2011) Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra- luminal thrombus formation. J R Soc Interface 8:1449–1461PubMedPubMedCentralCrossRef Biasetti J, Hussain F, Gasser TC (2011) Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra- luminal thrombus formation. J R Soc Interface 8:1449–1461PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Black MM, Drury PJ (1994) Mechanical and other problems of artificial valves. In: Berry C (ed) The pathology of devices. Springer, Berlin, pp 127–159 Black MM, Drury PJ (1994) Mechanical and other problems of artificial valves. In: Berry C (ed) The pathology of devices. Springer, Berlin, pp 127–159
19.
Zurück zum Zitat Bluestein D, Gutierrez C, Londono M, Schoephoerster RT (1999) Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann Biomed Eng 27(6):763–773PubMedCrossRef Bluestein D, Gutierrez C, Londono M, Schoephoerster RT (1999) Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann Biomed Eng 27(6):763–773PubMedCrossRef
20.
Zurück zum Zitat Bluestein D, Li YM, Krukenkamp IB (2002) Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J Biomech 35:1533–1540PubMedCrossRef Bluestein D, Li YM, Krukenkamp IB (2002) Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J Biomech 35:1533–1540PubMedCrossRef
21.
Zurück zum Zitat Bluestein D, Rambod E, Gharib M (2000) Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng 122:125–134PubMedCrossRef Bluestein D, Rambod E, Gharib M (2000) Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng 122:125–134PubMedCrossRef
22.
Zurück zum Zitat Bonomi D, Vergara C, Faggiano E, Stevanella M, Conti C, Redaelli A, Puppini G, Faggian G, Formaggia L, Luciani GB (2015) Influence of the aortic valve leaflets on the fluid-dynamics in aorta in presence of a normally functioning bicuspid valve. Biomech Model Mechanobiol 14(16):1349–1361PubMedCrossRef Bonomi D, Vergara C, Faggiano E, Stevanella M, Conti C, Redaelli A, Puppini G, Faggian G, Formaggia L, Luciani GB (2015) Influence of the aortic valve leaflets on the fluid-dynamics in aorta in presence of a normally functioning bicuspid valve. Biomech Model Mechanobiol 14(16):1349–1361PubMedCrossRef
23.
Zurück zum Zitat Borazjani I (2013) Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257:103–116CrossRef Borazjani I (2013) Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257:103–116CrossRef
24.
Zurück zum Zitat Borazjani I (2015) A review of fluid-structure interaction simulations of prosthetic heart valves. J Long Term Eff Med Implants 25:75–93PubMedCrossRef Borazjani I (2015) A review of fluid-structure interaction simulations of prosthetic heart valves. J Long Term Eff Med Implants 25:75–93PubMedCrossRef
25.
Zurück zum Zitat Borazjani I, Ge L, Le T, Sotiropoulos F (2013) A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Comput Fluids 77:76–96PubMedPubMedCentralCrossRef Borazjani I, Ge L, Le T, Sotiropoulos F (2013) A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Comput Fluids 77:76–96PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227(16):7587–7620PubMedPubMedCentralCrossRef Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227(16):7587–7620PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344PubMedCrossRef Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344PubMedCrossRef
28.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. J Biomech Eng 132(11):111005PubMedPubMedCentralCrossRef Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. J Biomech Eng 132(11):111005PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Caltagirone J-P, Vincent S (2001) Sur une methode de penalisation tensorielle pour la resolution des equations de Navier–Stokes. C R Acad Sci Ser IIB Mech 329(8):607–613 Caltagirone J-P, Vincent S (2001) Sur une methode de penalisation tensorielle pour la resolution des equations de Navier–Stokes. C R Acad Sci Ser IIB Mech 329(8):607–613
30.
Zurück zum Zitat Cannegieter SC, Rosendaal FR, Briet E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641PubMedCrossRef Cannegieter SC, Rosendaal FR, Briet E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641PubMedCrossRef
31.
Zurück zum Zitat Carey RF, Porter JM, Richard G, Luck C, Shu MC, Guo GX, Elizondo DR, Kingsbury C, Anderson S, Herman BA (1995) An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves. J Heart Valve Dis 4(5):532–539PubMed Carey RF, Porter JM, Richard G, Luck C, Shu MC, Guo GX, Elizondo DR, Kingsbury C, Anderson S, Herman BA (1995) An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves. J Heart Valve Dis 4(5):532–539PubMed
32.
Zurück zum Zitat Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11:1085–1096PubMedCrossRef Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11:1085–1096PubMedCrossRef
33.
Zurück zum Zitat Chandran KB (1992) Cardiovascular biomechanics. New York University Press, University of California Chandran KB (1992) Cardiovascular biomechanics. New York University Press, University of California
34.
Zurück zum Zitat Chandran KB (2010) Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovas Eng Technol 1(1):18–38CrossRef Chandran KB (2010) Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovas Eng Technol 1(1):18–38CrossRef
35.
Zurück zum Zitat Chandran KB, Aluri S (1997) Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation. Ann Biomed Eng 25(6):926–938PubMedCrossRef Chandran KB, Aluri S (1997) Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation. Ann Biomed Eng 25(6):926–938PubMedCrossRef
36.
Zurück zum Zitat Chandran KB, Dexter EU, Aluri S, Richenbacher WE (1998) Negative pressure transients with mechanical heart-valve closure: correlation between in vitro and in vivo results. Ann Biomed Eng 26(4):546–556PubMedCrossRef Chandran KB, Dexter EU, Aluri S, Richenbacher WE (1998) Negative pressure transients with mechanical heart-valve closure: correlation between in vitro and in vivo results. Ann Biomed Eng 26(4):546–556PubMedCrossRef
37.
Zurück zum Zitat Cheng R, Lai Y, Chandran K (2004) Three-dimensional fluid-structural interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32(11):1471–1483PubMedPubMedCentralCrossRef Cheng R, Lai Y, Chandran K (2004) Three-dimensional fluid-structural interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32(11):1471–1483PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Cheng R, Lai YG, Chandran KB (2003) Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J Heart Valve Dis 12(6):772–780PubMed Cheng R, Lai YG, Chandran KB (2003) Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J Heart Valve Dis 12(6):772–780PubMed
39.
Zurück zum Zitat Chizari H, Ismail F (2017) Accuracy variations in residual distribution and finite volume methods on triangular grids. Bull Malays Math Sci Soc 40(3):1231–1264CrossRef Chizari H, Ismail F (2017) Accuracy variations in residual distribution and finite volume methods on triangular grids. Bull Malays Math Sci Soc 40(3):1231–1264CrossRef
40.
Zurück zum Zitat Chizari H, Ismail F (2017) A Grid-insensitive LDA method on triangular grids solving the system of Euler equations. J Sci Comput 71(2):839–874CrossRef Chizari H, Ismail F (2017) A Grid-insensitive LDA method on triangular grids solving the system of Euler equations. J Sci Comput 71(2):839–874CrossRef
41.
Zurück zum Zitat Choi CR, Kim CN (2009) Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. ASAIO J 55(5):428–37PubMedCrossRef Choi CR, Kim CN (2009) Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. ASAIO J 55(5):428–37PubMedCrossRef
42.
Zurück zum Zitat Choi CR, Kim CN, Kwon YJ, Lee JW (2003) Pulsatile blood flows through a bileaflet mechanical heart valve with different approach methods of numerical analysis; pulsatile flows with fixed leaflets and interacted with moving leaflets. KSME Int J 17(7):1073–1082CrossRef Choi CR, Kim CN, Kwon YJ, Lee JW (2003) Pulsatile blood flows through a bileaflet mechanical heart valve with different approach methods of numerical analysis; pulsatile flows with fixed leaflets and interacted with moving leaflets. KSME Int J 17(7):1073–1082CrossRef
43.
Zurück zum Zitat Collins F, Collins F (2014) Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum Regurgitant Jet in a bileaflet mechanical heart valve. Ann Biomed Eng 42(1):110–122CrossRef Collins F, Collins F (2014) Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum Regurgitant Jet in a bileaflet mechanical heart valve. Ann Biomed Eng 42(1):110–122CrossRef
44.
Zurück zum Zitat Corbett SC, Ajdari A, Coskun AU, Nayeb-Hashemi H (2010) Effect of pulsatile blood flow on thrombosis potential with a step wall transition. ASAIO J 56(4):290–295PubMed Corbett SC, Ajdari A, Coskun AU, Nayeb-Hashemi H (2010) Effect of pulsatile blood flow on thrombosis potential with a step wall transition. ASAIO J 56(4):290–295PubMed
45.
Zurück zum Zitat Dangas GD, Weitz JI, Giustino G, Makkar R, Mehran R (2016) Prosthetic heart valve thrombosis. J Am Coll Cardiol 68(24):2670–2689PubMedCrossRef Dangas GD, Weitz JI, Giustino G, Makkar R, Mehran R (2016) Prosthetic heart valve thrombosis. J Am Coll Cardiol 68(24):2670–2689PubMedCrossRef
46.
Zurück zum Zitat Dasi LP, Ge L, Simon AH, Sotiropoulos F, Yoganathan PA (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19(6):067105CrossRef Dasi LP, Ge L, Simon AH, Sotiropoulos F, Yoganathan PA (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19(6):067105CrossRef
47.
Zurück zum Zitat De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003a) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712PubMedCrossRef De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003a) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712PubMedCrossRef
48.
Zurück zum Zitat De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2000) A two-dimensional fluid-structure interaction model of the aortic valve [correction of value]. J Biomech 33:1079–1088PubMedCrossRef De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2000) A two-dimensional fluid-structure interaction model of the aortic valve [correction of value]. J Biomech 33:1079–1088PubMedCrossRef
49.
Zurück zum Zitat De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003b) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36:103–112PubMedCrossRef De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003b) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36:103–112PubMedCrossRef
50.
Zurück zum Zitat De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37(3):303–311PubMedCrossRef De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37(3):303–311PubMedCrossRef
51.
Zurück zum Zitat De Tullio MD, Afferrante L, Demelio G, Pascazio G, Verzicco R (2011) Fluid-structure interaction of deformable aortic prostheses with a bileaflet mechanical valve. J Biomech 44(9):1684–1690PubMedCrossRef De Tullio MD, Afferrante L, Demelio G, Pascazio G, Verzicco R (2011) Fluid-structure interaction of deformable aortic prostheses with a bileaflet mechanical valve. J Biomech 44(9):1684–1690PubMedCrossRef
52.
Zurück zum Zitat De Tullio MD, Cristallo A, Balaras E, Verzicco R, David VR, Vergata T (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259CrossRef De Tullio MD, Cristallo A, Balaras E, Verzicco R, David VR, Vergata T (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259CrossRef
53.
Zurück zum Zitat de Tullio MD, Pascazio G, Weltert L, De Paulis R, Verzicco R (2011) Evaluation of prosthetic-valved devices by means of numerical simulations. Philos Trans Ser A Math Phys Eng Sci 369(1945):2502–2509CrossRef de Tullio MD, Pascazio G, Weltert L, De Paulis R, Verzicco R (2011) Evaluation of prosthetic-valved devices by means of numerical simulations. Philos Trans Ser A Math Phys Eng Sci 369(1945):2502–2509CrossRef
54.
Zurück zum Zitat De Tullio MD, Pedrizzetti G, Verzicco R (2011) On the effect of aortic root geometry on the coronary entry-flow after a bileaflet mechanical heart valve implant: a numerical study. Acta Mech 216(1–4):147–163CrossRef De Tullio MD, Pedrizzetti G, Verzicco R (2011) On the effect of aortic root geometry on the coronary entry-flow after a bileaflet mechanical heart valve implant: a numerical study. Acta Mech 216(1–4):147–163CrossRef
55.
Zurück zum Zitat Donea J, Giuliani S, Halleux J (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33:689–723CrossRef Donea J, Giuliani S, Halleux J (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33:689–723CrossRef
56.
Zurück zum Zitat Dumont K, Stijnen JMa, Vierendeels J, van de Vosse FN, Verdonck PR (2004) Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput Methods Biomech Biomed Eng 7(3):139–146CrossRef Dumont K, Stijnen JMa, Vierendeels J, van de Vosse FN, Verdonck PR (2004) Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput Methods Biomech Biomed Eng 7(3):139–146CrossRef
57.
Zurück zum Zitat Dumont K, Vierendeels J, Kaminsky R, van Nooten G, Verdonck P, Bluestein D (2007) Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng 129(4):558–565PubMedCrossRef Dumont K, Vierendeels J, Kaminsky R, van Nooten G, Verdonck P, Bluestein D (2007) Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng 129(4):558–565PubMedCrossRef
58.
Zurück zum Zitat Einav S, Bluestein D (2004) Dynamics of blood flow and platelet transport in pathological vessels. Ann N Y Acad Sci 1015(1):351–366PubMedCrossRef Einav S, Bluestein D (2004) Dynamics of blood flow and platelet transport in pathological vessels. Ann N Y Acad Sci 1015(1):351–366PubMedCrossRef
59.
Zurück zum Zitat Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60CrossRef Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60CrossRef
60.
Zurück zum Zitat Faggiano E, Antiga L, Puppini G, Quarteroni A, Luciani GB, Vergara C (2013) Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve. Biomech Model Mechanobiol 12(4):801–813PubMedCrossRef Faggiano E, Antiga L, Puppini G, Quarteroni A, Luciani GB, Vergara C (2013) Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve. Biomech Model Mechanobiol 12(4):801–813PubMedCrossRef
61.
Zurück zum Zitat Fallon AM, Dasi LP, Marzec UM, Hanson SR, Yoganathan AP (2008) Procoagulant properties of flow fields in stenotic and expansive orifices. Ann Biomed Eng 36(1):1–13PubMedCrossRef Fallon AM, Dasi LP, Marzec UM, Hanson SR, Yoganathan AP (2008) Procoagulant properties of flow fields in stenotic and expansive orifices. Ann Biomed Eng 36(1):1–13PubMedCrossRef
62.
Zurück zum Zitat Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRef Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRef
63.
Zurück zum Zitat Figliola RS, Mueller TJ (1981) On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J Biomech Eng 103(2):83–90PubMedCrossRef Figliola RS, Mueller TJ (1981) On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J Biomech Eng 103(2):83–90PubMedCrossRef
64.
Zurück zum Zitat Forsythe N, Mueller J-D (2007) Validation of a fluid-structure interaction model for a bileaflet mechanical heart valve. Int J Comput Fluid Dyn 22(8):541–553CrossRef Forsythe N, Mueller J-D (2007) Validation of a fluid-structure interaction model for a bileaflet mechanical heart valve. Int J Comput Fluid Dyn 22(8):541–553CrossRef
65.
Zurück zum Zitat Freudenberger RS, Hellkamp AS, Halperin JL, Poole J, Anderson J, Johnson G, Mark DB, Lee KL, Bardy GH (2007) Risk of thromboembolism in heart failure: an analysis from the sudden cardiac death in heart failure trial ( SCD-HeFT ). Circulation 115(20):2637–2641PubMedCrossRef Freudenberger RS, Hellkamp AS, Halperin JL, Poole J, Anderson J, Johnson G, Mark DB, Lee KL, Bardy GH (2007) Risk of thromboembolism in heart failure: an analysis from the sudden cardiac death in heart failure trial ( SCD-HeFT ). Circulation 115(20):2637–2641PubMedCrossRef
66.
Zurück zum Zitat Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36(2):276–297PubMedCrossRef Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36(2):276–297PubMedCrossRef
67.
Zurück zum Zitat Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng 125(5):709–718PubMedCrossRef Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng 125(5):709–718PubMedCrossRef
68.
Zurück zum Zitat Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225(2):1782–1809PubMedPubMedCentralCrossRef Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225(2):1782–1809PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Gilmanov A, Le TB, Sotiropoulos F (2015) A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J Comput Phys 300:814–843CrossRef Gilmanov A, Le TB, Sotiropoulos F (2015) A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J Comput Phys 300:814–843CrossRef
70.
Zurück zum Zitat Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492CrossRef Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492CrossRef
71.
Zurück zum Zitat Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartersian grids. J Comput Phys 191(2):660–669CrossRef Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartersian grids. J Comput Phys 191(2):660–669CrossRef
72.
Zurück zum Zitat Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794CrossRef Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794CrossRef
73.
Zurück zum Zitat Griffith BE (2011) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Methods Biomed Eng 28(1):1–29 Griffith BE (2011) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Methods Biomed Eng 28(1):1–29
74.
Zurück zum Zitat Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223(1):10–49CrossRef Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223(1):10–49CrossRef
75.
Zurück zum Zitat Griffith BE, Luo X, McQUEEN DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 01(01):137–177CrossRef Griffith BE, Luo X, McQUEEN DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 01(01):137–177CrossRef
76.
Zurück zum Zitat Grigioni M, Daniele C, Avenio GD, Barbaro V (2001) The influence of the leaflets ’ curvature on the flow field in two bileaflet prosthetic heart valves. J Biomech 34(5):613–621PubMedCrossRef Grigioni M, Daniele C, Avenio GD, Barbaro V (2001) The influence of the leaflets ’ curvature on the flow field in two bileaflet prosthetic heart valves. J Biomech 34(5):613–621PubMedCrossRef
77.
Zurück zum Zitat Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, Davenio G, Barbaro V (2005a) Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J 51(3):176–183PubMedCrossRef Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, Davenio G, Barbaro V (2005a) Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J 51(3):176–183PubMedCrossRef
78.
Zurück zum Zitat Grigioni M, Morbiducci U, Avenio GD, Di G, Costantino B, Gaudio D (2005b) A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobiol 4(4):249–260PubMedCrossRef Grigioni M, Morbiducci U, Avenio GD, Di G, Costantino B, Gaudio D (2005b) A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobiol 4(4):249–260PubMedCrossRef
79.
Zurück zum Zitat Gross JM, Guo GX, Hwang NH (1990) Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO Trans Am Soc Artif Int Organs 37(3):M357–8 Gross JM, Guo GX, Hwang NH (1990) Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO Trans Am Soc Artif Int Organs 37(3):M357–8
80.
Zurück zum Zitat Gross JM, Shermer CD, Hwang NHC (1988) Vortex shedding in bileaflet heart valve prostheses. ASAIO J 34(3):845–850 Gross JM, Shermer CD, Hwang NHC (1988) Vortex shedding in bileaflet heart valve prostheses. ASAIO J 34(3):845–850
81.
Zurück zum Zitat Guivier C, Deplano V, Pibarot P (2007) New insights into the assessment of the prosthetic valve performance in the presence of subaortic stenosis through a fluid-structure interaction model. J Biomech 40(10):2283–2290PubMedCrossRef Guivier C, Deplano V, Pibarot P (2007) New insights into the assessment of the prosthetic valve performance in the presence of subaortic stenosis through a fluid-structure interaction model. J Biomech 40(10):2283–2290PubMedCrossRef
82.
Zurück zum Zitat Guivier-Curien C, Deplano V, Bertrand E (2009) Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements. Med Eng Phys 31(8):986–993PubMedCrossRef Guivier-Curien C, Deplano V, Bertrand E (2009) Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements. Med Eng Phys 31(8):986–993PubMedCrossRef
83.
Zurück zum Zitat Haeri S, Shrimpton JS (2012) On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int J Multiph Flow 40:38–55CrossRef Haeri S, Shrimpton JS (2012) On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int J Multiph Flow 40:38–55CrossRef
84.
Zurück zum Zitat Halevi R, Hamdan A, Marom G, Lavon K, Ben-Zekry S, Raanani E, Bluestein D, Haj-Ali R (2016) Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 54(11):1683–1694PubMedCrossRef Halevi R, Hamdan A, Marom G, Lavon K, Ben-Zekry S, Raanani E, Bluestein D, Haj-Ali R (2016) Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 54(11):1683–1694PubMedCrossRef
85.
Zurück zum Zitat Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche Õ s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191:5537–5552CrossRef Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche Õ s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191:5537–5552CrossRef
86.
Zurück zum Zitat Hart JD (2002) Fluid-structure interaction in the aortic heart valve a three-dimensional computational analysis. Thesis Hart JD (2002) Fluid-structure interaction in the aortic heart valve a three-dimensional computational analysis. Thesis
87.
Zurück zum Zitat Hart JD, Peters GWM, Schreurs PJG, Baaijens FPT (2003) A three-dimensional computational analysis of fluid structure interaction in the aortic valve. J Biomech 36:103–112PubMedCrossRef Hart JD, Peters GWM, Schreurs PJG, Baaijens FPT (2003) A three-dimensional computational analysis of fluid structure interaction in the aortic valve. J Biomech 36:103–112PubMedCrossRef
88.
Zurück zum Zitat Hasenkam JM, Ringgaard S, Houlind K, Botnar RM, St dkilde Jorgensen H, Boesiger P, Pedersen EM (1999) Prosthetic heart valve evaluation by magnetic resonance imaging q. Eur J Cardiothorac Surg 16(3):300–305PubMedCrossRef Hasenkam JM, Ringgaard S, Houlind K, Botnar RM, St dkilde Jorgensen H, Boesiger P, Pedersen EM (1999) Prosthetic heart valve evaluation by magnetic resonance imaging q. Eur J Cardiothorac Surg 16(3):300–305PubMedCrossRef
89.
Zurück zum Zitat Hashimoto S, Manabe S, Matsumoto Y, Ikegami K, Tsuji H (2000) The effect of pulsatile shear flow on thrombus formation and hemolysis. In: 22nd annual EMBS international conference, Chicago, pp 2461–2462 Hashimoto S, Manabe S, Matsumoto Y, Ikegami K, Tsuji H (2000) The effect of pulsatile shear flow on thrombus formation and hemolysis. In: 22nd annual EMBS international conference, Chicago, pp 2461–2462
90.
Zurück zum Zitat Haya LK (2015) Measurements of flow through a bileaflet mechanical heart valve in an anatomically accurate model of the aorta. Ph.D. thesis, University of Ottawa Haya LK (2015) Measurements of flow through a bileaflet mechanical heart valve in an anatomically accurate model of the aorta. Ph.D. thesis, University of Ottawa
91.
Zurück zum Zitat He Z, Xi B, Zhu K, Hwang NH (2001) Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis 10(5):666–674PubMed He Z, Xi B, Zhu K, Hwang NH (2001) Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis 10(5):666–674PubMed
92.
Zurück zum Zitat Hellums JD, Peterson DM, Stathopoulos NA, Moake JL, Giorgio TD (1987) Studies on the mechanisms of shear-induced platelet activation. In: Hartmann A, Kuschinsky W (eds) Cerebral ischemia and hemorheology. Springer, pp 80–89 Hellums JD, Peterson DM, Stathopoulos NA, Moake JL, Giorgio TD (1987) Studies on the mechanisms of shear-induced platelet activation. In: Hartmann A, Kuschinsky W (eds) Cerebral ischemia and hemorheology. Springer, pp 80–89
93.
Zurück zum Zitat Hong T, Kim CN (2011) A numerical analysis of the blood flow around the bileaflet mechanical heart valves with different rotational implantation angles. J Hydrodyn Ser B 23(5):607–614CrossRef Hong T, Kim CN (2011) A numerical analysis of the blood flow around the bileaflet mechanical heart valves with different rotational implantation angles. J Hydrodyn Ser B 23(5):607–614CrossRef
94.
Zurück zum Zitat Hose DR, Narracott AJ, Penrose JMT, Baguley D, Jones IP, Lawford PV (2006) Fundamental mechanics of aortic heart valve closure. J Biomech 39(5):958–967PubMedCrossRef Hose DR, Narracott AJ, Penrose JMT, Baguley D, Jones IP, Lawford PV (2006) Fundamental mechanics of aortic heart valve closure. J Biomech 39(5):958–967PubMedCrossRef
95.
Zurück zum Zitat Huang ZJ, Merkle CL (1994) Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J Biomech 11(4):391–402CrossRef Huang ZJ, Merkle CL (1994) Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J Biomech 11(4):391–402CrossRef
96.
Zurück zum Zitat Hutchison C, Sullivan P, Ethier CR (2011) Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med Biol Eng Comput 49:325–335PubMedCrossRef Hutchison C, Sullivan P, Ethier CR (2011) Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med Biol Eng Comput 49:325–335PubMedCrossRef
97.
Zurück zum Zitat Hwang NH (1998) Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J Heart Valve Dis 7(2):140PubMed Hwang NH (1998) Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J Heart Valve Dis 7(2):140PubMed
98.
Zurück zum Zitat Iaccarino G, Verzicco R, Bari P, David VR (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331CrossRef Iaccarino G, Verzicco R, Bari P, David VR (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331CrossRef
99.
Zurück zum Zitat Ikeno T, Kajishima T (2007) Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations. J Comput Phys 226:1485–1508CrossRef Ikeno T, Kajishima T (2007) Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations. J Comput Phys 226:1485–1508CrossRef
100.
Zurück zum Zitat Ismail F, Carrica PM, Xing T, Stern F (2010) Evaluation of linear and nonlinear convection schemes on multidimensional non-orthogonal grids with applications to KVLCC2 tanker. Int J Numer Methods Fluids 64:850–886 Ismail F, Carrica PM, Xing T, Stern F (2010) Evaluation of linear and nonlinear convection schemes on multidimensional non-orthogonal grids with applications to KVLCC2 tanker. Int J Numer Methods Fluids 64:850–886
101.
Zurück zum Zitat Jahandardoost M, Fradet G, Mohammadi H (2016) Effect of pulsatility rate on the hemodynamics of bileaflet mechanical prosthetic heart valves (St. Jude medical valve) for the aortic position in the opening phase; a computational study. Proc Inst Mech Eng H J Eng Med 230:1–16CrossRef Jahandardoost M, Fradet G, Mohammadi H (2016) Effect of pulsatility rate on the hemodynamics of bileaflet mechanical prosthetic heart valves (St. Jude medical valve) for the aortic position in the opening phase; a computational study. Proc Inst Mech Eng H J Eng Med 230:1–16CrossRef
102.
Zurück zum Zitat Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94CrossRef Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94CrossRef
103.
Zurück zum Zitat Jesty J, Yin W, Perrotta P, Bluestein D (2003) Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14(3):143–149PubMedCrossRef Jesty J, Yin W, Perrotta P, Bluestein D (2003) Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14(3):143–149PubMedCrossRef
104.
Zurück zum Zitat Kafesjian R, Howanec M, Ward G, Diep L, Wagstaff L, Rhee R (1994) Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis 3:2–7 Kafesjian R, Howanec M, Ward G, Diep L, Wagstaff L, Rhee R (1994) Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis 3:2–7
105.
Zurück zum Zitat Khalafvand SS, Ng EYK, Zhong L, Hung TK (2012) Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study. Comput Biol Med 42:863–870PubMedCrossRef Khalafvand SS, Ng EYK, Zhong L, Hung TK (2012) Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study. Comput Biol Med 42:863–870PubMedCrossRef
106.
Zurück zum Zitat King MJ, Corden J, David T, Fisher J (1996) A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J Biomech 29(5):609–618PubMedCrossRef King MJ, Corden J, David T, Fisher J (1996) A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J Biomech 29(5):609–618PubMedCrossRef
107.
Zurück zum Zitat Kleine P, Hasenkam MJ, Nygaard H, Perthel M, Wesemeyer D, Laas J (2000) Tilting disc versus bileaflet aortic valve substitutes: intraoperative and postoperative hemodynamic performance in humans. J Heart Valve Dis 9(2):308–311PubMed Kleine P, Hasenkam MJ, Nygaard H, Perthel M, Wesemeyer D, Laas J (2000) Tilting disc versus bileaflet aortic valve substitutes: intraoperative and postoperative hemodynamic performance in humans. J Heart Valve Dis 9(2):308–311PubMed
108.
Zurück zum Zitat Kleine P, Perthel M, Nygaard H, Hansen SB, Paulsen PK, Riis C, Laas J (1998) Medtronic Hall versus St. Jude Medical mechanical aortic valve: downstream turbulences with respect to rotation in pigs. J Heart Valve Dis 7(5):548–555PubMed Kleine P, Perthel M, Nygaard H, Hansen SB, Paulsen PK, Riis C, Laas J (1998) Medtronic Hall versus St. Jude Medical mechanical aortic valve: downstream turbulences with respect to rotation in pigs. J Heart Valve Dis 7(5):548–555PubMed
109.
Zurück zum Zitat Kleine P, Scherer M, Abdel-Rahman U, Klesius AA, Ackermann H, Moritz A (2002) Effect of mechanical aortic valve orientation on coronary artery flow: comparison of tilting disc versus bileaflet prostheses in pigs. J Thorac Cardiovasc Surg 124(5):925–932PubMedCrossRef Kleine P, Scherer M, Abdel-Rahman U, Klesius AA, Ackermann H, Moritz A (2002) Effect of mechanical aortic valve orientation on coronary artery flow: comparison of tilting disc versus bileaflet prostheses in pigs. J Thorac Cardiovasc Surg 124(5):925–932PubMedCrossRef
110.
Zurück zum Zitat Kodama H, Takeshita K, Araki T (2004) Fluid particle dynamics simulation of charged colloidal suspensions. J Phys Condens Matter 115(16):115–123CrossRef Kodama H, Takeshita K, Araki T (2004) Fluid particle dynamics simulation of charged colloidal suspensions. J Phys Condens Matter 115(16):115–123CrossRef
111.
Zurück zum Zitat Krafczyk M, Cerrolaza M, Schulz M, Rank E (1998) Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice Boltzmann methods. J Biomech 31:453–462PubMedCrossRef Krafczyk M, Cerrolaza M, Schulz M, Rank E (1998) Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice Boltzmann methods. J Biomech 31:453–462PubMedCrossRef
112.
Zurück zum Zitat Krafczyk M, Tolke J, Rank E, Schulz M (2001) Two-dimensional simulation of fluid structure interaction using lattice-Boltzmann methods. Comput Struct 79:2031–2037CrossRef Krafczyk M, Tolke J, Rank E, Schulz M (2001) Two-dimensional simulation of fluid structure interaction using lattice-Boltzmann methods. Comput Struct 79:2031–2037CrossRef
113.
Zurück zum Zitat Krishnan S, Udaykumar HS, Marshall JS, Chandran KB (2006) Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann Biomed Eng 34(10):1519–1534PubMedCrossRef Krishnan S, Udaykumar HS, Marshall JS, Chandran KB (2006) Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann Biomed Eng 34(10):1519–1534PubMedCrossRef
114.
Zurück zum Zitat Kuan YH, Kabinejadian F, Nguyen V-t, Su B, Yoganathan AP, Leo HL (2014) Computer methods in biomechanics and biomedical engineering comparison of hinge microflow fields of bileaflet mechanical heart valves implanted in different sinus shape and downstream geometry. Ph.D. thesis Kuan YH, Kabinejadian F, Nguyen V-t, Su B, Yoganathan AP, Leo HL (2014) Computer methods in biomechanics and biomedical engineering comparison of hinge microflow fields of bileaflet mechanical heart valves implanted in different sinus shape and downstream geometry. Ph.D. thesis
115.
Zurück zum Zitat Lai YG, Chandran KB, Lemmon J (2002) A numerical simulation of mechanical heart valve closure fluid dynamics. J Biomech 35:881–892PubMedCrossRef Lai YG, Chandran KB, Lemmon J (2002) A numerical simulation of mechanical heart valve closure fluid dynamics. J Biomech 35:881–892PubMedCrossRef
116.
Zurück zum Zitat Lakshmi PD, Simon HA, Sucosky P, Yoganathan AP, Dasi LP, Simon HA, Sucosky P, Yoganathan AP (2009) Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 36(2):225–237CrossRef Lakshmi PD, Simon HA, Sucosky P, Yoganathan AP, Dasi LP, Simon HA, Sucosky P, Yoganathan AP (2009) Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 36(2):225–237CrossRef
117.
Zurück zum Zitat Le TB, Sotiropoulos F (2012) Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62PubMedCentralCrossRef Le TB, Sotiropoulos F (2012) Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62PubMedCentralCrossRef
118.
Zurück zum Zitat Lee CS, Chandran KB (1995) Numerical simulation of instantaneous backflow through central clearance of bileaflet mechanical heart valves at closure: shear stress and pressure fields within clearance. Med Biol Eng Comput 33(3):257–263PubMedCrossRef Lee CS, Chandran KB (1995) Numerical simulation of instantaneous backflow through central clearance of bileaflet mechanical heart valves at closure: shear stress and pressure fields within clearance. Med Biol Eng Comput 33(3):257–263PubMedCrossRef
119.
Zurück zum Zitat Leo HL (2005). An in vitro investigation of the flow fields through bileaflet and polymeric prosthetic heart valves. Ph.D. thesis, Georgia Institute of Technology Leo HL (2005). An in vitro investigation of the flow fields through bileaflet and polymeric prosthetic heart valves. Ph.D. thesis, Georgia Institute of Technology
120.
Zurück zum Zitat Leonard A (1985) Computing three-dimensional incompressible flows with vortex elements. Annu Rev Fluid Mech 17(1):523–559CrossRef Leonard A (1985) Computing three-dimensional incompressible flows with vortex elements. Annu Rev Fluid Mech 17(1):523–559CrossRef
121.
Zurück zum Zitat Li C-P, Lu P-C (2012) Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J Artif Organs 15(4):364–74PubMedCrossRef Li C-P, Lu P-C (2012) Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J Artif Organs 15(4):364–74PubMedCrossRef
122.
Zurück zum Zitat Li C-P, Lu P-C, Liu J-S, Lo C-W, Hwang NH (2008) Role of vortices in cavitation formation in the flow across a mechanical heart valve. J Heart Valve Dis 17(4):435–445PubMed Li C-P, Lu P-C, Liu J-S, Lo C-W, Hwang NH (2008) Role of vortices in cavitation formation in the flow across a mechanical heart valve. J Heart Valve Dis 17(4):435–445PubMed
123.
Zurück zum Zitat Liang G, Leo HL, Fotis S, Yoganathan A (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127(5):782–797CrossRef Liang G, Leo HL, Fotis S, Yoganathan A (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127(5):782–797CrossRef
124.
Zurück zum Zitat Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122(2):118–124PubMedCrossRef Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122(2):118–124PubMedCrossRef
125.
Zurück zum Zitat Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197(25–28):2173–2197CrossRef Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197(25–28):2173–2197CrossRef
126.
Zurück zum Zitat Lu P-C, Liu J-S, Huang R-H, Lo C-W, Lai H-C, Hwang NH (2004) The closing behavior of mechanical aortic heart. ASAIO J 50(4):294–300PubMedCrossRef Lu P-C, Liu J-S, Huang R-H, Lo C-W, Lai H-C, Hwang NH (2004) The closing behavior of mechanical aortic heart. ASAIO J 50(4):294–300PubMedCrossRef
127.
Zurück zum Zitat Luo H, Dai H, Ferreira de Sousa PJ, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76CrossRef Luo H, Dai H, Ferreira de Sousa PJ, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76CrossRef
128.
Zurück zum Zitat Marom G (2014) Numerical methods for fluid-structure interaction models of aortic valves. Arch Comput Methods Eng 22(4):595–620CrossRef Marom G (2014) Numerical methods for fluid-structure interaction models of aortic valves. Arch Comput Methods Eng 22(4):595–620CrossRef
129.
Zurück zum Zitat Marom G, Haj-Ali R, Raanani E, Schäfers H-J, Rosenfeld M (2012) A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50(2):173–182PubMedCrossRef Marom G, Haj-Ali R, Raanani E, Schäfers H-J, Rosenfeld M (2012) A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50(2):173–182PubMedCrossRef
130.
Zurück zum Zitat Marom G, Kim HS, Rosenfeld M, Raanani E, Haj-Ali R (2013) Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 51:839–848PubMedCrossRef Marom G, Kim HS, Rosenfeld M, Raanani E, Haj-Ali R (2013) Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 51:839–848PubMedCrossRef
131.
Zurück zum Zitat Massing A, Larson MG, Logg A (2013) Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions. SIAM J Sci Comput 35(1):c23–c47CrossRef Massing A, Larson MG, Logg A (2013) Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions. SIAM J Sci Comput 35(1):c23–c47CrossRef
132.
Zurück zum Zitat Miljoen H, Herck PV, Paelinck B, Colli A, Ducci A, Burriesci G (2016) Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med 374(16):1590–1592PubMedCrossRef Miljoen H, Herck PV, Paelinck B, Colli A, Ducci A, Burriesci G (2016) Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med 374(16):1590–1592PubMedCrossRef
133.
Zurück zum Zitat Mirkhani N, Davoudi MR, Hanafizadeh P, Javidi D, Saffarian N (2016) On-X heart valve prosthesis: numerical simulation of hemodynamic performance in accelerating systole. Cardiovasc Eng Technol 7(3):223–237PubMedCrossRef Mirkhani N, Davoudi MR, Hanafizadeh P, Javidi D, Saffarian N (2016) On-X heart valve prosthesis: numerical simulation of hemodynamic performance in accelerating systole. Cardiovasc Eng Technol 7(3):223–237PubMedCrossRef
134.
Zurück zum Zitat Mittal R, Hee J, Vedula V, Choi YJ, Liu H, Huang HH, Jain S, Younes L, Abraham T, George RT (2016) Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput Phys 305:1065–1082CrossRef Mittal R, Hee J, Vedula V, Choi YJ, Liu H, Huang HH, Jain S, Younes L, Abraham T, George RT (2016) Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput Phys 305:1065–1082CrossRef
135.
Zurück zum Zitat Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37(1):239–261CrossRef Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37(1):239–261CrossRef
136.
Zurück zum Zitat Mohammadi H, Ahmadian MT, Wan WK (2006) Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method. Med Eng Phys 28:122–133PubMedCrossRef Mohammadi H, Ahmadian MT, Wan WK (2006) Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method. Med Eng Phys 28:122–133PubMedCrossRef
137.
Zurück zum Zitat Mohammadi H, Mequanint K (2011) Prosthetic aortic heart valves: modeling and design. Med Eng Phys 33(2):131–147PubMedCrossRef Mohammadi H, Mequanint K (2011) Prosthetic aortic heart valves: modeling and design. Med Eng Phys 33(2):131–147PubMedCrossRef
139.
Zurück zum Zitat Morbiducci U, Ponzini R, Nobili M, Massai D, Montevecchi FM, Bluestein D, Redaelli A (2009) Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J Biomech 42:1952–1960PubMedCrossRef Morbiducci U, Ponzini R, Nobili M, Massai D, Montevecchi FM, Bluestein D, Redaelli A (2009) Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J Biomech 42:1952–1960PubMedCrossRef
140.
Zurück zum Zitat Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10(2):96–103PubMedCrossRef Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10(2):96–103PubMedCrossRef
141.
Zurück zum Zitat Mousel JA (2012) A massively parallel adaptive sharp interface solver with application to mechanical heart valve simulations. Ph.D. thesis, University of Iowa Mousel JA (2012) A massively parallel adaptive sharp interface solver with application to mechanical heart valve simulations. Ph.D. thesis, University of Iowa
142.
Zurück zum Zitat Murphy DW, Dasi LP, Vukasinovic J, Glezer A, Yoganathan AP (2010) Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays. J Biomech Eng 132(7):071011PubMedCrossRef Murphy DW, Dasi LP, Vukasinovic J, Glezer A, Yoganathan AP (2010) Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays. J Biomech Eng 132(7):071011PubMedCrossRef
143.
Zurück zum Zitat Naimah W, Ab W, Balan P, Sun Z, Miin Y (2016) Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection: a preliminary study using CFD approach. Appl Math Model 40(4):3115–3127CrossRef Naimah W, Ab W, Balan P, Sun Z, Miin Y (2016) Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection: a preliminary study using CFD approach. Appl Math Model 40(4):3115–3127CrossRef
144.
Zurück zum Zitat Narracott AJ, Zervides C, Diaz V, Rafiroiu D, Lawford PV (2010) Analysis of a mechanical heart valve prosthesis and a native venous valve: two distinct applications of FSI to biomedical applications. Int J Numer Methods Biomed Eng 26(3–4):421–434CrossRef Narracott AJ, Zervides C, Diaz V, Rafiroiu D, Lawford PV (2010) Analysis of a mechanical heart valve prosthesis and a native venous valve: two distinct applications of FSI to biomedical applications. Int J Numer Methods Biomed Eng 26(3–4):421–434CrossRef
145.
Zurück zum Zitat Nestola MGC, Faggiano E, Vergara C, Lancellotti RM, Ippolito S, Filippi S, Quarteroni A, Scrofani R (2016) Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput Methods Biomech Biomed Eng 20(2):5842 Nestola MGC, Faggiano E, Vergara C, Lancellotti RM, Ippolito S, Filippi S, Quarteroni A, Scrofani R (2016) Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput Methods Biomech Biomed Eng 20(2):5842
146.
Zurück zum Zitat Nguyen VT, Kuan YH, Chen PY, Ge L, Sotiropoulos F, Yoganathan AP, Leo HL (2012) Experimentally validated hemodynamics simulations of mechanical heart valves in three dimensions. Cardiovasc Eng Technol 3(1):88–100CrossRef Nguyen VT, Kuan YH, Chen PY, Ge L, Sotiropoulos F, Yoganathan AP, Leo HL (2012) Experimentally validated hemodynamics simulations of mechanical heart valves in three dimensions. Cardiovasc Eng Technol 3(1):88–100CrossRef
147.
Zurück zum Zitat Nobari S, Mongrain R, Leask R, Cartier R (2013) The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: a fluid-structure interaction study. Med Biol Eng Comput 51(8):923–936PubMedCrossRef Nobari S, Mongrain R, Leask R, Cartier R (2013) The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: a fluid-structure interaction study. Med Biol Eng Comput 51(8):923–936PubMedCrossRef
148.
Zurück zum Zitat Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech 41(11):2539–2550PubMedCrossRef Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech 41(11):2539–2550PubMedCrossRef
149.
Zurück zum Zitat Paszkowiak JJ, Dardik A, Haven N (2003) Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovasc Surg 37(1):47–57CrossRef Paszkowiak JJ, Dardik A, Haven N (2003) Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovasc Surg 37(1):47–57CrossRef
150.
Zurück zum Zitat Pedrizzetti G, Domenichini F (2006) Flow-driven opening of a valvular leaflet. J Fluid Mech 569:321CrossRef Pedrizzetti G, Domenichini F (2006) Flow-driven opening of a valvular leaflet. J Fluid Mech 569:321CrossRef
151.
Zurück zum Zitat Pedrizzetti G, Domenichini F (2007) Asymmetric opening of a simple bileaflet valve. Phys Rev Lett 98(21):1–4CrossRef Pedrizzetti G, Domenichini F (2007) Asymmetric opening of a simple bileaflet valve. Phys Rev Lett 98(21):1–4CrossRef
152.
Zurück zum Zitat Pelliccioni O, Cerrolaza M, Herrera M (2007) Lattice Boltzmann dynamic simulation of a mechanical heart valve device. Math Comput Simul 75:1–14CrossRef Pelliccioni O, Cerrolaza M, Herrera M (2007) Lattice Boltzmann dynamic simulation of a mechanical heart valve device. Math Comput Simul 75:1–14CrossRef
153.
Zurück zum Zitat Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271CrossRef Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271CrossRef
154.
Zurück zum Zitat Peskin CS, McQueen DM (1995) A general method for the computer simulation of biological systems interacting with fluids. In: Symposia of the society for experimental biology, vol 49. Syndics of the Cambridge University Press, [1947]–2005, London, pp 265–276 Peskin CS, McQueen DM (1995) A general method for the computer simulation of biological systems interacting with fluids. In: Symposia of the society for experimental biology, vol 49. Syndics of the Cambridge University Press, [1947]–2005, London, pp 265–276
155.
Zurück zum Zitat Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M (2004) 3-D simulation of the St. Jude medical bileaflet valve opening process: fluid-structure interaction study and experimental validation. J Heart Valve Dis 13(5):804–813PubMed Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M (2004) 3-D simulation of the St. Jude medical bileaflet valve opening process: fluid-structure interaction study and experimental validation. J Heart Valve Dis 13(5):804–813PubMed
156.
Zurück zum Zitat Roman F, Napoli E, Milici B, Armenio V (2009) An improved immersed boundary method for curvilinear grids. Comput Fluids 38(8):1510–1527CrossRef Roman F, Napoli E, Milici B, Armenio V (2009) An improved immersed boundary method for curvilinear grids. Comput Fluids 38(8):1510–1527CrossRef
157.
Zurück zum Zitat Romano GP (2008) Deliverable d24-study case report n 2 pulse duplicator with aortic root model from rwth aachen smart-piv ist-2002-37548 European project. http://www.smart-piv.com Romano GP (2008) Deliverable d24-study case report n 2 pulse duplicator with aortic root model from rwth aachen smart-piv ist-2002-37548 European project. http://​www.​smart-piv.​com
158.
Zurück zum Zitat Rosenfeld M, Avrahami I, Einav S (2002) Unsteady effects on the flow across tilting disk valves. J Biomech Eng 124(1):21–29PubMedCrossRef Rosenfeld M, Avrahami I, Einav S (2002) Unsteady effects on the flow across tilting disk valves. J Biomech Eng 124(1):21–29PubMedCrossRef
159.
160.
Zurück zum Zitat Saxena R, Lemmon J, Ellis J, Yoganathan A, Medical SJ (2003) An in vitro assessment by means of laser Doppler velocimetry of the medtronic advantage bileaflet mechanical heart valve hinge flow. J Thorac Cardiovasc Surg 126(1):90–98PubMedCrossRef Saxena R, Lemmon J, Ellis J, Yoganathan A, Medical SJ (2003) An in vitro assessment by means of laser Doppler velocimetry of the medtronic advantage bileaflet mechanical heart valve hinge flow. J Thorac Cardiovasc Surg 126(1):90–98PubMedCrossRef
161.
Zurück zum Zitat Schulz-Heik K, Ramachandran J, Bluestein D, Jesty J (2006) The extent of platelet activation under shear depends on platelet count: differential expression of anionic phospholipid and factor Va. Pathophysiol Haemost Thromb 34(6):255–262CrossRef Schulz-Heik K, Ramachandran J, Bluestein D, Jesty J (2006) The extent of platelet activation under shear depends on platelet count: differential expression of anionic phospholipid and factor Va. Pathophysiol Haemost Thromb 34(6):255–262CrossRef
162.
Zurück zum Zitat Scotten LN, Walker DK (2004) New laboratory technique measures projected dynamic area of prosthetic heart valves. J Heart Valve Dis 13(1):120–132PubMed Scotten LN, Walker DK (2004) New laboratory technique measures projected dynamic area of prosthetic heart valves. J Heart Valve Dis 13(1):120–132PubMed
163.
Zurück zum Zitat Seiler C (2004) Management and follow up of prosthetic heart valves. Heart 98:818–824CrossRef Seiler C (2004) Management and follow up of prosthetic heart valves. Heart 98:818–824CrossRef
164.
Zurück zum Zitat Shadden SC, Astorino M, Gerbeau JF (2010) Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20(1):1–10CrossRef Shadden SC, Astorino M, Gerbeau JF (2010) Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20(1):1–10CrossRef
165.
Zurück zum Zitat Shahriari S (2011) Computational modeling of cardiovascular flows using smoothed particle hydrodynamics. Ph.D. thesis Shahriari S (2011) Computational modeling of cardiovascular flows using smoothed particle hydrodynamics. Ph.D. thesis
166.
Zurück zum Zitat Shahriari S, Maleki H, Hassan I, Kadem L (2012) Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics. J Biomech 45(15):2637–2644PubMedCrossRef Shahriari S, Maleki H, Hassan I, Kadem L (2012) Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics. J Biomech 45(15):2637–2644PubMedCrossRef
167.
Zurück zum Zitat Sheriff J, Soared JOS, Xenos M, Jesty J, Bluestein D (2013) Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng 41(6):1279–1296PubMedPubMedCentralCrossRef Sheriff J, Soared JOS, Xenos M, Jesty J, Bluestein D (2013) Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng 41(6):1279–1296PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Shi Y, Joon T, Yeo H, Zhao Y (2006) Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method. J Biol Phys 32(6):531–551PubMedCrossRef Shi Y, Joon T, Yeo H, Zhao Y (2006) Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method. J Biol Phys 32(6):531–551PubMedCrossRef
169.
Zurück zum Zitat Shi Y, Zhao Y, Yeo TJ, Hwang NH (2003) Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition. J Heart Valve Dis 12(2):245–255PubMed Shi Y, Zhao Y, Yeo TJ, Hwang NH (2003) Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition. J Heart Valve Dis 12(2):245–255PubMed
170.
Zurück zum Zitat Shim B, Chang S (1997) Numerical analysis of three-dimensional Bjork–shiley valvular flow in an aorta. J Biomech Eng 119:45–51PubMedCrossRef Shim B, Chang S (1997) Numerical analysis of three-dimensional Bjork–shiley valvular flow in an aorta. J Biomech Eng 119:45–51PubMedCrossRef
172.
Zurück zum Zitat Shu MC, O’Rourke KK, Coppin CM, Lemmon JD (2004) Flow characterization of the ADVANTAGE and St. Jude medical bileaflet mechanical heart valves. J Heart Valve Dis 13(5):814–822PubMed Shu MC, O’Rourke KK, Coppin CM, Lemmon JD (2004) Flow characterization of the ADVANTAGE and St. Jude medical bileaflet mechanical heart valves. J Heart Valve Dis 13(5):814–822PubMed
173.
Zurück zum Zitat Simon H, Liang G, Fotis S, P YA (2010a) Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Ann Biomed Eng 38(3):841–853PubMedCrossRef Simon H, Liang G, Fotis S, P YA (2010a) Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Ann Biomed Eng 38(3):841–853PubMedCrossRef
174.
Zurück zum Zitat Simon HA (2009) Numerical simulations of the micro flow field in the hinge region. Ph.D. thesis, Georgia Institute of Technology Simon HA (2009) Numerical simulations of the micro flow field in the hinge region. Ph.D. thesis, Georgia Institute of Technology
175.
Zurück zum Zitat Simon HA, Ge L, Sotiropoulos F, Yoganathan AP (2010b) Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Anna Biomed Eng 38(11):3295–3310CrossRef Simon HA, Ge L, Sotiropoulos F, Yoganathan AP (2010b) Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Anna Biomed Eng 38(11):3295–3310CrossRef
176.
Zurück zum Zitat Sirois E, Sun W (2011) Computational evaluation of platelet activation induced by a bioprosthetic heart valve. Artif Organs 35(2):157–165PubMed Sirois E, Sun W (2011) Computational evaluation of platelet activation induced by a bioprosthetic heart valve. Artif Organs 35(2):157–165PubMed
177.
Zurück zum Zitat Smadi O, Fenech M, Hassan I, Kadem L (2009) Flow through a defective mechanical heart valve: a steady flow analysis. Med Eng Phys 31(3):295–305PubMedCrossRef Smadi O, Fenech M, Hassan I, Kadem L (2009) Flow through a defective mechanical heart valve: a steady flow analysis. Med Eng Phys 31(3):295–305PubMedCrossRef
178.
Zurück zum Zitat Soares JS, Sheriff J, Bluestein D (2013) A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech ModelMechanobiol 12(6):1127–1141CrossRef Soares JS, Sheriff J, Bluestein D (2013) A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech ModelMechanobiol 12(6):1127–1141CrossRef
179.
Zurück zum Zitat Sotiropoulos F, Le Bao T, Gilmanov A (2016) Fluid mechanics of heart valves and their replacements. Annu Rev Fluid Mech 48:259–283CrossRef Sotiropoulos F, Le Bao T, Gilmanov A (2016) Fluid mechanics of heart valves and their replacements. Annu Rev Fluid Mech 48:259–283CrossRef
180.
Zurück zum Zitat Sotiropoulos F, Borazjani I (2009) A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47(3):245–256PubMedPubMedCentralCrossRef Sotiropoulos F, Borazjani I (2009) A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47(3):245–256PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21CrossRef Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21CrossRef
182.
Zurück zum Zitat Stefano Z, Formaggia L, Vergara C (2016) An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. MOX Report n. 35/2016, (35) Stefano Z, Formaggia L, Vergara C (2016) An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. MOX Report n. 35/2016, (35)
183.
Zurück zum Zitat Stijnen JMA, de Hart J, Bovendeerd PHM, van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19(6):835–850CrossRef Stijnen JMA, de Hart J, Bovendeerd PHM, van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19(6):835–850CrossRef
184.
Zurück zum Zitat Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A (2013) Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. Med Eng Phys 35(12):1721–1730PubMedCrossRef Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A (2013) Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. Med Eng Phys 35(12):1721–1730PubMedCrossRef
185.
Zurück zum Zitat Su B, Kabinejadian F, Phang HQ, Kumar GP, Cui F, Kim S, Tan RS, Hon JKF, Allen JC, Leo HL, Zhong L (2015) Numerical modeling of intraventricular flow during diastole after implantation of BMHV. PLoS ONE 10(5):e0126315PubMedPubMedCentralCrossRef Su B, Kabinejadian F, Phang HQ, Kumar GP, Cui F, Kim S, Tan RS, Hon JKF, Allen JC, Leo HL, Zhong L (2015) Numerical modeling of intraventricular flow during diastole after implantation of BMHV. PLoS ONE 10(5):e0126315PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Sun W, Li K, Sirois E (2010) Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J Biomech 43(16):3085–3090PubMedCrossRef Sun W, Li K, Sirois E (2010) Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J Biomech 43(16):3085–3090PubMedCrossRef
187.
Zurück zum Zitat Tai CH, Liew KM, Zhao Y (2007) Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids. Comput Struct 85(11–14):749–762CrossRef Tai CH, Liew KM, Zhao Y (2007) Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids. Comput Struct 85(11–14):749–762CrossRef
188.
Zurück zum Zitat Takagi S, Sugiyama K, Ii S, Matsumoto Y (2012) A review of full Eulerian methods for fluid structure interaction problems. J Appl Mech 79(1):010911CrossRef Takagi S, Sugiyama K, Ii S, Matsumoto Y (2012) A review of full Eulerian methods for fluid structure interaction problems. J Appl Mech 79(1):010911CrossRef
189.
Zurück zum Zitat Tamagawa M, Kaneda H, Hiramoto M, Nagahama S (2009) Simulation of thrombus formation in shear flows using lattice Boltzmann method. Artif Organs 33(8):604–610PubMedCrossRef Tamagawa M, Kaneda H, Hiramoto M, Nagahama S (2009) Simulation of thrombus formation in shear flows using lattice Boltzmann method. Artif Organs 33(8):604–610PubMedCrossRef
190.
Zurück zum Zitat Tanaka H, Araki T (2000) Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys Rev Lett 85(6):1338–1341PubMedCrossRef Tanaka H, Araki T (2000) Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys Rev Lett 85(6):1338–1341PubMedCrossRef
191.
Zurück zum Zitat Tang HS, Jones SC, Sotiropoulos F (2003) An overset-grid method for 3D unsteady incompressible flows. J Comput Phys 191(2):567–600CrossRef Tang HS, Jones SC, Sotiropoulos F (2003) An overset-grid method for 3D unsteady incompressible flows. J Comput Phys 191(2):567–600CrossRef
192.
Zurück zum Zitat Teijeira FJ, Mikhail AA (1992) Cardiac valve replacement with mechanical prostheses: current status and trends. Springer, Boston Teijeira FJ, Mikhail AA (1992) Cardiac valve replacement with mechanical prostheses: current status and trends. Springer, Boston
193.
Zurück zum Zitat Tirilomis T (2012) Clinical case report based study acute thrombosis of mechanical bi-leaflet aortic valve prosthesis. J Cardiovasc Dis Res 3(3):228–230PubMedPubMedCentralCrossRef Tirilomis T (2012) Clinical case report based study acute thrombosis of mechanical bi-leaflet aortic valve prosthesis. J Cardiovasc Dis Res 3(3):228–230PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44(5):827–836PubMedCrossRef Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44(5):827–836PubMedCrossRef
195.
Zurück zum Zitat Tullio MDD, Nam J, Pascazio G, Balaras E, Verzicco R (2012) Computational prediction of mechanical hemolysis in aortic valved prostheses. Eur J Mech B Fluids 35:47–53CrossRef Tullio MDD, Nam J, Pascazio G, Balaras E, Verzicco R (2012) Computational prediction of mechanical hemolysis in aortic valved prostheses. Eur J Mech B Fluids 35:47–53CrossRef
196.
Zurück zum Zitat Van Loon R, Anderson P, van de Vosse F (2006) A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2):806–823CrossRef Van Loon R, Anderson P, van de Vosse F (2006) A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2):806–823CrossRef
197.
Zurück zum Zitat Van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves. Int J Numer Methods Fluids 46(5):533–544CrossRef Van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves. Int J Numer Methods Fluids 46(5):533–544CrossRef
198.
Zurück zum Zitat Vergara C, Viscardi F, Antiga L, Luciani GB (2012) Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. Artif Organs 36(4):368–378PubMedCrossRef Vergara C, Viscardi F, Antiga L, Luciani GB (2012) Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. Artif Organs 36(4):368–378PubMedCrossRef
199.
Zurück zum Zitat Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite, vol method. Pearson Education, London Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite, vol method. Pearson Education, London
200.
Zurück zum Zitat Vierendeels J, Dumont K, Dick E, Verdonck P (2005) Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion. AIAA J 43(12):2549–2557CrossRef Vierendeels J, Dumont K, Dick E, Verdonck P (2005) Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion. AIAA J 43(12):2549–2557CrossRef
201.
Zurück zum Zitat Vigmostad SC, Udaykumar HS (2011) Algorithms for fluid-structure interaction. In: Chandran KB, Udaykumar HS, Reinhardt JM (eds) Image-based computational modeling of the human circulatory and pulmonary systems. Springer, Boston, pp 191–234 Vigmostad SC, Udaykumar HS (2011) Algorithms for fluid-structure interaction. In: Chandran KB, Udaykumar HS, Reinhardt JM (eds) Image-based computational modeling of the human circulatory and pulmonary systems. Springer, Boston, pp 191–234
202.
Zurück zum Zitat Vitale N, De Feo M, De Santo LS, Pollice A, Tedesco N, Cotrufo M (1999) Dose-dependent fetal complications of warfarin in pregnant women with mechanical heart valves. J Am Coll Cardiol 33(6):1637–1641PubMedCrossRef Vitale N, De Feo M, De Santo LS, Pollice A, Tedesco N, Cotrufo M (1999) Dose-dependent fetal complications of warfarin in pregnant women with mechanical heart valves. J Am Coll Cardiol 33(6):1637–1641PubMedCrossRef
203.
Zurück zum Zitat Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, Sotiropoulos F (2013) Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 46(2):217–28PubMedCrossRef Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, Sotiropoulos F (2013) Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 46(2):217–28PubMedCrossRef
204.
Zurück zum Zitat Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF (2012) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35(6):723–735PubMedCrossRef Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF (2012) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35(6):723–735PubMedCrossRef
205.
Zurück zum Zitat Wilcox DC, Introduction I (1994) Simulation of transition with a two-equation turbulence model. AIAA J 32(2):247–255CrossRef Wilcox DC, Introduction I (1994) Simulation of transition with a two-equation turbulence model. AIAA J 32(2):247–255CrossRef
206.
Zurück zum Zitat Woo YR, Yoganathan AP (1984) Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves. Med Instrum 19(5):224–231 Woo YR, Yoganathan AP (1984) Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves. Med Instrum 19(5):224–231
207.
Zurück zum Zitat Woo Y-R, Yoganathan AP (1986a) In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical mitral heart valve prostheses. J Biomech 19(1):39–51PubMedCrossRef Woo Y-R, Yoganathan AP (1986a) In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical mitral heart valve prostheses. J Biomech 19(1):39–51PubMedCrossRef
208.
Zurück zum Zitat Woo Y-R, Yoganathan AP (1986b) Pulsatile flow velocity and shear stress measurements on the St. Jude bileaflet valve prosthesis. Scand J Thorac Cardiovasc Surg 20(1):15–28PubMedCrossRef Woo Y-R, Yoganathan AP (1986b) Pulsatile flow velocity and shear stress measurements on the St. Jude bileaflet valve prosthesis. Scand J Thorac Cardiovasc Surg 20(1):15–28PubMedCrossRef
209.
Zurück zum Zitat Woo Y-R, Yoganathan AP (1986c) Pulsatile flow velocity and shear stress measurements on the St. Jude bileaflet valve prosthesis. Scand J Thorac Cardiovasc Surg 20(1):15–28PubMedCrossRef Woo Y-R, Yoganathan AP (1986c) Pulsatile flow velocity and shear stress measurements on the St. Jude bileaflet valve prosthesis. Scand J Thorac Cardiovasc Surg 20(1):15–28PubMedCrossRef
210.
Zurück zum Zitat Wu J, Yun BM, Fallon AM, Hanson SR, Aidun CK, Yoganathan AP (2011) Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Ann Biomed Eng 39(2):897–910PubMedCrossRef Wu J, Yun BM, Fallon AM, Hanson SR, Aidun CK, Yoganathan AP (2011) Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Ann Biomed Eng 39(2):897–910PubMedCrossRef
211.
Zurück zum Zitat Xenos M, Girdhar G, Alemu Y, Jesty J, Slepian M, Einav S, Bluestein D (2010) Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J Biomech 43(12):2400–2409PubMedPubMedCentralCrossRef Xenos M, Girdhar G, Alemu Y, Jesty J, Slepian M, Einav S, Bluestein D (2010) Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J Biomech 43(12):2400–2409PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Xia GH, Zhao Y, Yeo JH (2009) Parallel unstructured multigrid simulation of 3D unsteady flows and fluid-structure interaction in mechanical heart valve using immersed membrane method. Comput Fluids 38(1):71–79CrossRef Xia GH, Zhao Y, Yeo JH (2009) Parallel unstructured multigrid simulation of 3D unsteady flows and fluid-structure interaction in mechanical heart valve using immersed membrane method. Comput Fluids 38(1):71–79CrossRef
213.
Zurück zum Zitat Xu S (2008) The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow. J Comput Phys 227(10):5045–5071CrossRef Xu S (2008) The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow. J Comput Phys 227(10):5045–5071CrossRef
214.
Zurück zum Zitat Yang J (2016) Sharp interface direct forcing immersed boundary methods: a summary of some algorithms and applications. J Hydrodyn 28(5):713–730CrossRef Yang J (2016) Sharp interface direct forcing immersed boundary methods: a summary of some algorithms and applications. J Hydrodyn 28(5):713–730CrossRef
215.
Zurück zum Zitat Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. Ph.D. thesis, University of Minnesota Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. Ph.D. thesis, University of Minnesota
216.
Zurück zum Zitat Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D (2004) Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 32(8):1058–1066PubMedCrossRef Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D (2004) Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 32(8):1058–1066PubMedCrossRef
217.
Zurück zum Zitat Yoganathan AP (2000) Cardiac valve prostheses. In: Bronzino EJD (ed) The biomedical engineering handbook, chapter 127, 2nd edn. CRC Press, Boca Raton Yoganathan AP (2000) Cardiac valve prostheses. In: Bronzino EJD (ed) The biomedical engineering handbook, chapter 127, 2nd edn. CRC Press, Boca Raton
218.
Zurück zum Zitat Yoganathan AP, Chaux A, Gray RJ, Woo Y-R, DeRobertis M, Williams FP, Matloff JM (1984) Bileaflet, tilting disc and porcine aortic valve substitutes. In vitro. J Am Coll Cardiol 3(2):313–320PubMedCrossRef Yoganathan AP, Chaux A, Gray RJ, Woo Y-R, DeRobertis M, Williams FP, Matloff JM (1984) Bileaflet, tilting disc and porcine aortic valve substitutes. In vitro. J Am Coll Cardiol 3(2):313–320PubMedCrossRef
219.
Zurück zum Zitat Yoganathan aP, He Z, Casey JS (2004) Fluid mechanics of heart valves. Ann Rev Biomed Eng 6:331–362CrossRef Yoganathan aP, He Z, Casey JS (2004) Fluid mechanics of heart valves. Ann Rev Biomed Eng 6:331–362CrossRef
220.
Zurück zum Zitat Yun BM, Aidun CK, Yoganathan AP (2014a) Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. J Biomech Eng 136(10):17 Yun BM, Aidun CK, Yoganathan AP (2014a) Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. J Biomech Eng 136(10):17
221.
Zurück zum Zitat Yun BM, Dasi LP, Aidun CK, Yoganathan aP (2014b) Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J Fluid Mech 743:170–201CrossRef Yun BM, Dasi LP, Aidun CK, Yoganathan aP (2014b) Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J Fluid Mech 743:170–201CrossRef
222.
Zurück zum Zitat Yun BM, Dasi LP, Aidun CK, Yoganathan aP (2014c) Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method. J Fluid Mech 754:122–160CrossRef Yun BM, Dasi LP, Aidun CK, Yoganathan aP (2014c) Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method. J Fluid Mech 754:122–160CrossRef
223.
Zurück zum Zitat Yun BM, McElhinney DB, Arjunon S, Mirabella L, Aidun CK, Yoganathan AP (2014d) Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. J Biomech 47(12):3169–3177PubMedPubMedCentralCrossRef Yun BM, McElhinney DB, Arjunon S, Mirabella L, Aidun CK, Yoganathan AP (2014d) Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. J Biomech 47(12):3169–3177PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F, Aidun CK, Yoganathan AP (2012) A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Anna Biomed Eng 40(7):1468–1485CrossRef Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F, Aidun CK, Yoganathan AP (2012) A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Anna Biomed Eng 40(7):1468–1485CrossRef
225.
Zurück zum Zitat Zakaria MS, Ismail F, Tamagawa M, Fazli A, Aziz A, Wiriadidjaya S, Basri AA, Ahmad KA (2016) Numerical analysis using a fixed grid method for cardiovascular flow application. J Med Imaging Health Inf 6(6):1483–1488CrossRef Zakaria MS, Ismail F, Tamagawa M, Fazli A, Aziz A, Wiriadidjaya S, Basri AA, Ahmad KA (2016) Numerical analysis using a fixed grid method for cardiovascular flow application. J Med Imaging Health Inf 6(6):1483–1488CrossRef
226.
Zurück zum Zitat Zhen TK, Zubair M, Ahmad KA (2011) Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV performance. Chin J Aeronaut 24(5):577–583CrossRef Zhen TK, Zubair M, Ahmad KA (2011) Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV performance. Chin J Aeronaut 24(5):577–583CrossRef
Metadaten
Titel
Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting
verfasst von
Mohamad Shukri Zakaria
Farzad Ismail
Masaaki Tamagawa
Ahmad Fazli Abdul Aziz
Surjatin Wiriadidjaja
Adi Azrif Basri
Kamarul Arifin Ahmad
Publikationsdatum
26.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 9/2017
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1688-9

Weitere Artikel der Ausgabe 9/2017

Medical & Biological Engineering & Computing 9/2017 Zur Ausgabe