Skip to main content
Erschienen in: Journal of Materials Science 2/2020

16.09.2019 | Review

Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications

verfasst von: Haobo Jiang, Bo Zhao, Yan Liu, Shuyi Li, Juan Liu, Yunyun Song, Dandan Wang, Wei Xin, Luquan Ren

Erschienen in: Journal of Materials Science | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In view of the bulk production, resolvability, dispersibility of aqueous solution, graphene oxides (GO) prepared by strong chemical oxidation of graphite flakes have been widely used for the production of graphene-like materials. However, because of the insulating nature caused by amounts of defects on its surface, the application of GO material is greatly constrained. Hence, effective reduction of GO becomes critical. The photoreduction of GO showed more attractive properties than conventional thermal/chemical routes due to its synchronous reduction and flexible patterning, which facilitates a number of applications, such as the electrochemical energy storage devices, electronic devices, and biomimetic substrates. In this review, we dedicatedly summarized the latest advances in photoreduction including the fabrications and applied values in multiple fields. We deem that the photoreduction and synchronous patterning of GO will have very prospects in the development of graphene devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
2.
Zurück zum Zitat Novoselov K, Jiang Z, Zhang Y, Morozov S, Stormer H, Zeitler U, Maan J, Boebinger G, Kim P, Geim A (2007) Room-temperature quantum hall effect in graphene. Science 315:1379 Novoselov K, Jiang Z, Zhang Y, Morozov S, Stormer H, Zeitler U, Maan J, Boebinger G, Kim P, Geim A (2007) Room-temperature quantum hall effect in graphene. Science 315:1379
3.
Zurück zum Zitat Strek W, Cichy B, Radosinski L, Gluchowski P, Marciniak L, Lukaszewicz M, Hreniak D (2015) Laser-induced white-light emission from graphene ceramics—opening a band gap in graphene. Light Sci Appl 4:e237 Strek W, Cichy B, Radosinski L, Gluchowski P, Marciniak L, Lukaszewicz M, Hreniak D (2015) Laser-induced white-light emission from graphene ceramics—opening a band gap in graphene. Light Sci Appl 4:e237
4.
Zurück zum Zitat Rodrigo D, Tittl A, Limaj O, Abajo F, Pruneri V, Altug H (2017) Double-layer graphene for enhanced tunable infrared plasmonics. Light Sci Appl 6:e16277 Rodrigo D, Tittl A, Limaj O, Abajo F, Pruneri V, Altug H (2017) Double-layer graphene for enhanced tunable infrared plasmonics. Light Sci Appl 6:e16277
5.
Zurück zum Zitat Shekhar C, Nayak A, Yan S et al (2015) Extremely large magnetoresistance and ultrahigh mobility in the topological weyl semimetal candidate Nbp. Nat Phys 11:645–649 Shekhar C, Nayak A, Yan S et al (2015) Extremely large magnetoresistance and ultrahigh mobility in the topological weyl semimetal candidate Nbp. Nat Phys 11:645–649
6.
Zurück zum Zitat Hong J, Hu Z, Probert M (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun 6:6293 Hong J, Hu Z, Probert M (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun 6:6293
7.
Zurück zum Zitat Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi M (2016) Graphene-based nanocomposites for energy storage. Adv Energy Mater 6:1502159 Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi M (2016) Graphene-based nanocomposites for energy storage. Adv Energy Mater 6:1502159
8.
Zurück zum Zitat Zheng Z, Li J, Ma T, Fang H et al (2017) Tailoring of electromagnetic field localizations by two dimensional graphene nanostructures. Light Sci Appl 6:e17057 Zheng Z, Li J, Ma T, Fang H et al (2017) Tailoring of electromagnetic field localizations by two dimensional graphene nanostructures. Light Sci Appl 6:e17057
9.
Zurück zum Zitat Blackburn J, Ferguson A, Cho C, Grunlan J (2018) Carbon-nanotube-based thermoelectric materials and devices. Adv Mater 30:1704386 Blackburn J, Ferguson A, Cho C, Grunlan J (2018) Carbon-nanotube-based thermoelectric materials and devices. Adv Mater 30:1704386
10.
Zurück zum Zitat Guo Y, Xu G, Yang X et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015 Guo Y, Xu G, Yang X et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015
11.
Zurück zum Zitat Zhu C, Han T, Duoss E, Golobic A, Kuntz J, Spadaccini C, Worsley M (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962 Zhu C, Han T, Duoss E, Golobic A, Kuntz J, Spadaccini C, Worsley M (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962
12.
Zurück zum Zitat Seyed H, Rouhollah J, Dorna E et al (2014) High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8:2456–2466 Seyed H, Rouhollah J, Dorna E et al (2014) High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8:2456–2466
13.
Zurück zum Zitat Lee H, Choi T, Lee Y et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566–572 Lee H, Choi T, Lee Y et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566–572
14.
Zurück zum Zitat Xin W, Chen X, Liu Z, Jiang W, Gao X, Jiang X, Chen Y, Tian J (2016) Photovoltage enhancement in twisted-bilayer graphene using surface plasmon resonance. Adv Opt Mater 4:1703–1710 Xin W, Chen X, Liu Z, Jiang W, Gao X, Jiang X, Chen Y, Tian J (2016) Photovoltage enhancement in twisted-bilayer graphene using surface plasmon resonance. Adv Opt Mater 4:1703–1710
15.
Zurück zum Zitat Xin W, Liu Z, Sheng Q et al (2014) Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Opt Express 22:10239–10247 Xin W, Liu Z, Sheng Q et al (2014) Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Opt Express 22:10239–10247
16.
Zurück zum Zitat Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498 Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498
17.
Zurück zum Zitat Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366 Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366
18.
Zurück zum Zitat Liu Z, Lau S, Yan F (2015) Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem Soc Rev 44:5638–5679 Liu Z, Lau S, Yan F (2015) Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem Soc Rev 44:5638–5679
19.
Zurück zum Zitat Li Z, Huang H, Tang S et al (2016) Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74:144–154 Li Z, Huang H, Tang S et al (2016) Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74:144–154
20.
Zurück zum Zitat Chimene D, Alge D, Gaharwar A (2015) Two dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 27:7261–7284 Chimene D, Alge D, Gaharwar A (2015) Two dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 27:7261–7284
22.
Zurück zum Zitat Huang B, Clark G, Navarro-Moratalla E et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273 Huang B, Clark G, Navarro-Moratalla E et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273
23.
Zurück zum Zitat Wang C, Zhao M, Li J et al (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271 Wang C, Zhao M, Li J et al (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271
24.
Zurück zum Zitat Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259 Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259
25.
Zurück zum Zitat Li F, Zhou Z (2018) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14:1702961 Li F, Zhou Z (2018) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14:1702961
26.
Zurück zum Zitat Dubal D, Chodankar N, Kim D, Gomez-Romero P (2017) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129 Dubal D, Chodankar N, Kim D, Gomez-Romero P (2017) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129
27.
Zurück zum Zitat Peng H, Huang J, Cheng X, Zhang Q (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7:1700260 Peng H, Huang J, Cheng X, Zhang Q (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7:1700260
28.
Zurück zum Zitat Trung T, Ramasundaram S, Hwang B, Lee N (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28:502–509 Trung T, Ramasundaram S, Hwang B, Lee N (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28:502–509
29.
Zurück zum Zitat Cheng Y, Wang R, Sun J, Gao L (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27:7365–7371 Cheng Y, Wang R, Sun J, Gao L (2015) A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater 27:7365–7371
30.
Zurück zum Zitat Liu H, Dong M, Huang W et al (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83 Liu H, Dong M, Huang W et al (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83
31.
Zurück zum Zitat Wang K, Ausri I, Chu K et al (2019) Pressure-driven solvent transport and complex ion permeation through graphene oxide membranes. Adv Mater Interfaces 6:1802056 Wang K, Ausri I, Chu K et al (2019) Pressure-driven solvent transport and complex ion permeation through graphene oxide membranes. Adv Mater Interfaces 6:1802056
32.
Zurück zum Zitat Ares P, Aguilar G, Rodriguez-San-Miguel D et al (2016) Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater 28:6332–6336 Ares P, Aguilar G, Rodriguez-San-Miguel D et al (2016) Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater 28:6332–6336
33.
Zurück zum Zitat Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715 Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715
34.
Zurück zum Zitat Coleman J (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22 Coleman J (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22
35.
Zurück zum Zitat Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548 Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548
36.
Zurück zum Zitat Li X, Cai W, Colombo L, Ruoff R (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272 Li X, Cai W, Colombo L, Ruoff R (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272
37.
Zurück zum Zitat Zhu F, Chen W, Xu Y et al (2015) Epitaxial growth of two-dimensional stanine. Nat Mater 14:1020–1025 Zhu F, Chen W, Xu Y et al (2015) Epitaxial growth of two-dimensional stanine. Nat Mater 14:1020–1025
38.
Zurück zum Zitat Dlubak B, Martin M, Deranlot C et al (2012) Highly efficient spin transport in epitaxial graphene on SiC. Nat Phys 8:557–561 Dlubak B, Martin M, Deranlot C et al (2012) Highly efficient spin transport in epitaxial graphene on SiC. Nat Phys 8:557–561
39.
Zurück zum Zitat Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398 Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398
40.
Zurück zum Zitat Ciesielski A, Haar S, Aliprandi A et al (2016) Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots. ACS Nano 10:10768–10777 Ciesielski A, Haar S, Aliprandi A et al (2016) Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots. ACS Nano 10:10768–10777
41.
Zurück zum Zitat Lu L, Zhu Y, Shi C, Pei Y (2016) Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 109:373–383 Lu L, Zhu Y, Shi C, Pei Y (2016) Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 109:373–383
42.
Zurück zum Zitat Chen Y, Gong X, Gai J (2016) Progress and challenges in transfer of large-area graphene films. Adv Sci 3:1500343 Chen Y, Gong X, Gai J (2016) Progress and challenges in transfer of large-area graphene films. Adv Sci 3:1500343
43.
Zurück zum Zitat Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186 Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186
44.
Zurück zum Zitat Dimiev A, Alemany L, Tour J (2013) Graphene oxide origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588 Dimiev A, Alemany L, Tour J (2013) Graphene oxide origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588
45.
Zurück zum Zitat Xu L, Shi R, Li H, Han C, Wu M, Wong C, Kang F, Li B (2018) Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 127:459–468 Xu L, Shi R, Li H, Han C, Wu M, Wong C, Kang F, Li B (2018) Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 127:459–468
46.
Zurück zum Zitat Sherlala A, Raman A, Bello M, Asghar A (2017) A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–1017 Sherlala A, Raman A, Bello M, Asghar A (2017) A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–1017
47.
Zurück zum Zitat Wang J, Chen B (2015) Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem Eng J 281:379–388 Wang J, Chen B (2015) Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem Eng J 281:379–388
48.
Zurück zum Zitat Yang Q, Su Y, Chi C et al (2017) Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat Mater 16:1198–1203 Yang Q, Su Y, Chi C et al (2017) Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat Mater 16:1198–1203
49.
Zurück zum Zitat Chen L, Shi G, Shen J et al (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380–383 Chen L, Shi G, Shen J et al (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380–383
50.
Zurück zum Zitat Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron–cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29:1606793 Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron–cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29:1606793
51.
Zurück zum Zitat Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487 Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487
52.
Zurück zum Zitat Wen B, Wang X, Cao W et al (2014) Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6:5754–5761 Wen B, Wang X, Cao W et al (2014) Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6:5754–5761
53.
Zurück zum Zitat Sun X, He J, Li G, Tang J, Wang T, Guo Y, Xue H (2012) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1:765–777 Sun X, He J, Li G, Tang J, Wang T, Guo Y, Xue H (2012) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1:765–777
54.
Zurück zum Zitat Travlou N, Kyzas G, Lazaridis N, Deliyanni E (2013) Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 29:1657–1668 Travlou N, Kyzas G, Lazaridis N, Deliyanni E (2013) Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 29:1657–1668
55.
Zurück zum Zitat Sher S, Zhang K, Park A, Kim K, Park N, Park J, Yoo P (2013) Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5:5093–5101 Sher S, Zhang K, Park A, Kim K, Park N, Park J, Yoo P (2013) Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5:5093–5101
56.
Zurück zum Zitat Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339 Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339
57.
Zurück zum Zitat Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A (2013) Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5:5426–5434 Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A (2013) Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5:5426–5434
58.
Zurück zum Zitat Feng H, Cheng R, Zhao X, Duan X, Li J (2013) Corrigendum: a low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539 Feng H, Cheng R, Zhao X, Duan X, Li J (2013) Corrigendum: a low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539
59.
Zurück zum Zitat Kuila T, Mishra A, Khanra P, Kim N, Lee J (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5:52–71 Kuila T, Mishra A, Khanra P, Kim N, Lee J (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5:52–71
60.
Zurück zum Zitat Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228 Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228
61.
Zurück zum Zitat Cote L, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032 Cote L, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032
62.
Zurück zum Zitat Gilje S, Dubin S, Badakhshan A, Farrar J, Danczyk S, Kaner R (2010) Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv Mater 22:419–423 Gilje S, Dubin S, Badakhshan A, Farrar J, Danczyk S, Kaner R (2010) Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv Mater 22:419–423
63.
Zurück zum Zitat Williams G, Seger B, Kamat P (2008) TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491 Williams G, Seger B, Kamat P (2008) TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491
64.
Zurück zum Zitat Ng Y, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612 Ng Y, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612
65.
Zurück zum Zitat Mukherjee R, Thomas A, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6:7867–7878 Mukherjee R, Thomas A, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6:7867–7878
66.
Zurück zum Zitat Han D, Zhang Y, Jiang H, Xia H, Feng J, Chen Q, Xu H, Sun H (2015) Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater 27:332–338 Han D, Zhang Y, Jiang H, Xia H, Feng J, Chen Q, Xu H, Sun H (2015) Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater 27:332–338
67.
Zurück zum Zitat Cai J, Lv C, Aoyagi E, Ogawa S, Watanabe A (2018) Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl Mater Interfaces 10:23987–23996 Cai J, Lv C, Aoyagi E, Ogawa S, Watanabe A (2018) Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl Mater Interfaces 10:23987–23996
68.
Zurück zum Zitat Zheng X, Jia B, Chen X, Gu M (2014) In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26:2699–2703 Zheng X, Jia B, Chen X, Gu M (2014) In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26:2699–2703
69.
Zurück zum Zitat Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I, Niaura G, Mažeikienė R (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52:574–582 Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I, Niaura G, Mažeikienė R (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52:574–582
70.
Zurück zum Zitat Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683 Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683
71.
Zurück zum Zitat Abdelsayed V, Moussa S, Hassan H, Aluri H, Collinson M, El-Shall M (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1:2804–2809 Abdelsayed V, Moussa S, Hassan H, Aluri H, Collinson M, El-Shall M (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1:2804–2809
72.
Zurück zum Zitat Kim S, Parvez M, Chhowalla M (2009) UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem Phys Lett 483:124–127 Kim S, Parvez M, Chhowalla M (2009) UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem Phys Lett 483:124–127
73.
Zurück zum Zitat Ding Y, Zhang P, Zhuo Q, Ren H, Yang Z, Jiang Y (2011) A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 22:215601 Ding Y, Zhang P, Zhuo Q, Ren H, Yang Z, Jiang Y (2011) A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 22:215601
74.
Zurück zum Zitat Sokolov D, Rouleau C, Geohegan D, Orlando T (2013) Excimer laser reduction and patterning of graphite oxide. Carbon 53:81–89 Sokolov D, Rouleau C, Geohegan D, Orlando T (2013) Excimer laser reduction and patterning of graphite oxide. Carbon 53:81–89
75.
Zurück zum Zitat Arul R, Oosterbeek R, Robertson J, Xu G, Jin J, Simpson M (2016) The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement. Carbon 99:423–431 Arul R, Oosterbeek R, Robertson J, Xu G, Jin J, Simpson M (2016) The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement. Carbon 99:423–431
76.
Zurück zum Zitat Prezioso S, Perrozzi F, Donarelli M, Bisti F, Santucci S, Palladino L, Nardone M, Treossi E et al (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28:5489–5495 Prezioso S, Perrozzi F, Donarelli M, Bisti F, Santucci S, Palladino L, Nardone M, Treossi E et al (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28:5489–5495
77.
Zurück zum Zitat Smirnov V, Arbuzov A, Shul’ga Y, Baskakov S, Martynenko V, Muradyan V, Kresova E (2011) Photoreduction of graphite oxide. High Energy Chem 45:57–61 Smirnov V, Arbuzov A, Shul’ga Y, Baskakov S, Martynenko V, Muradyan V, Kresova E (2011) Photoreduction of graphite oxide. High Energy Chem 45:57–61
78.
Zurück zum Zitat Guo L, Jiang H, Shao R et al (2012) Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50:1667–1673 Guo L, Jiang H, Shao R et al (2012) Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50:1667–1673
79.
Zurück zum Zitat Matsumoto Y, Koinuma M, Kim S, Watanabe Y, Taniguchi T, Hatakeyama K, Tateishi H, Ida S (2010) Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl Mater Interfaces 2:3461–3466 Matsumoto Y, Koinuma M, Kim S, Watanabe Y, Taniguchi T, Hatakeyama K, Tateishi H, Ida S (2010) Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl Mater Interfaces 2:3461–3466
80.
Zurück zum Zitat Sokolov D, Shepperd K, Orlando T (2010) Formation of graphene features from direct laser-induced reduction of graphite oxide. J Phys Chem Lett 1:2633–2636 Sokolov D, Shepperd K, Orlando T (2010) Formation of graphene features from direct laser-induced reduction of graphite oxide. J Phys Chem Lett 1:2633–2636
81.
Zurück zum Zitat Wang L, Lin X, Hu W et al (2015) Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl 4:e342 Wang L, Lin X, Hu W et al (2015) Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl 4:e342
82.
Zurück zum Zitat Dai Z, Xiao X, Wu W et al (2015) Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light Sci Appl 4:e253 Dai Z, Xiao X, Wu W et al (2015) Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light Sci Appl 4:e253
83.
Zurück zum Zitat Chen J, Zheng B, Shao G et al (2015) An all-optical modulator based on a stereo graphene–microfiber structure. Light Sci Appl 4:e360 Chen J, Zheng B, Shao G et al (2015) An all-optical modulator based on a stereo graphene–microfiber structure. Light Sci Appl 4:e360
84.
Zurück zum Zitat Zhu L, Liu F, Lin H et al (2016) Angle-selective perfect absorption with two dimensional materials. Light Sci Appl 5:e16052 Zhu L, Liu F, Lin H et al (2016) Angle-selective perfect absorption with two dimensional materials. Light Sci Appl 5:e16052
85.
Zurück zum Zitat Xu Q, Ma T, Danesh M et al (2017) Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light Sci Appl 6:e16204 Xu Q, Ma T, Danesh M et al (2017) Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light Sci Appl 6:e16204
86.
Zurück zum Zitat Fatt T, Tao Y, Soon T, Wei H, Haur S (2012) Direct laser-enabled graphene oxide-reduced graphene oxide layered structures with micropatterning. J Appl Phys 112:064309 Fatt T, Tao Y, Soon T, Wei H, Haur S (2012) Direct laser-enabled graphene oxide-reduced graphene oxide layered structures with micropatterning. J Appl Phys 112:064309
87.
Zurück zum Zitat Zhou Y, Bao Q, Varghese B, Tang L, Tan C, Sow C, Loh K (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22:67–71 Zhou Y, Bao Q, Varghese B, Tang L, Tan C, Sow C, Loh K (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22:67–71
88.
Zurück zum Zitat Avella-oliver M, Morais S, Puchades R, Maquieira Á (2016) Towards photochromic and thermochromic biosensing. TrAC Trends Anal Chem 79:37–45 Avella-oliver M, Morais S, Puchades R, Maquieira Á (2016) Towards photochromic and thermochromic biosensing. TrAC Trends Anal Chem 79:37–45
89.
Zurück zum Zitat Strong V, Dubin S, El-Kady M, Lech A, Wang Y, Weiller B, Kaner R (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6:1395–1403 Strong V, Dubin S, El-Kady M, Lech A, Wang Y, Weiller B, Kaner R (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6:1395–1403
90.
Zurück zum Zitat Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F (2010) Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20 Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F (2010) Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20
91.
Zurück zum Zitat Guo L, Zhang Y, Han D et al (2014) Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Adv Opt Mater 2:120–125 Guo L, Zhang Y, Han D et al (2014) Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Adv Opt Mater 2:120–125
92.
Zurück zum Zitat Kim G, Shao L, Zhang K (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723 Kim G, Shao L, Zhang K (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723
93.
Zurück zum Zitat Dianov E (2012) Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light Sci Appl 1:e12 Dianov E (2012) Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light Sci Appl 1:e12
94.
Zurück zum Zitat Xing G, Yi J, Yan F, Wu T, Li S (2014) Positive magnetoresistance in ferromagnetic Nd-doped In2O3 thin films grown by pulse laser deposition. Appl Phys Lett 104:202411 Xing G, Yi J, Yan F, Wu T, Li S (2014) Positive magnetoresistance in ferromagnetic Nd-doped In2O3 thin films grown by pulse laser deposition. Appl Phys Lett 104:202411
95.
Zurück zum Zitat Park S, An J, Potts J, Velamakanni A, Murali S, Ruoff R (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019–3023 Park S, An J, Potts J, Velamakanni A, Murali S, Ruoff R (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019–3023
96.
Zurück zum Zitat Reddy A, Srivastava A, Gowda S, Gowda S, Gullapalli H, Dubey M, Ajayan P (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342 Reddy A, Srivastava A, Gowda S, Gowda S, Gullapalli H, Dubey M, Ajayan P (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342
97.
Zurück zum Zitat Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878 Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878
98.
Zurück zum Zitat Zhao X, Hayner C, Kung M, Kung H (2012) Photothermal-assisted fabrication of iron fluoride–graphene composite paper cathodes for high-energy lithium-ion batteries. Chem Commun 48:9909–9911 Zhao X, Hayner C, Kung M, Kung H (2012) Photothermal-assisted fabrication of iron fluoride–graphene composite paper cathodes for high-energy lithium-ion batteries. Chem Commun 48:9909–9911
99.
Zurück zum Zitat Wang W, Song X, Gu C, Liu D, Liu J, Huang J (2018) A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. J Alloy Compd 741:223–230 Wang W, Song X, Gu C, Liu D, Liu J, Huang J (2018) A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. J Alloy Compd 741:223–230
100.
Zurück zum Zitat Wang G, Zhang J, Yang S, Wang F, Zhuang X, Müllen K, Feng X (2018) Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv Energy Mater 8:1702254 Wang G, Zhang J, Yang S, Wang F, Zhuang X, Müllen K, Feng X (2018) Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv Energy Mater 8:1702254
101.
Zurück zum Zitat Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498 Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498
102.
Zurück zum Zitat Wei W, Cui X, Chen W, Ivey D (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721 Wei W, Cui X, Chen W, Ivey D (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721
103.
Zurück zum Zitat Chen H, Cong T, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312 Chen H, Cong T, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312
104.
Zurück zum Zitat Kaempgen M, Chan C, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876 Kaempgen M, Chan C, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876
105.
Zurück zum Zitat Dong X, Xu H, Wang X et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213 Dong X, Xu H, Wang X et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213
106.
Zurück zum Zitat Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816 Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816
107.
Zurück zum Zitat Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730 Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730
108.
Zurück zum Zitat El-Kady M, Strong V, Dubin S, Kaner R (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330 El-Kady M, Strong V, Dubin S, Kaner R (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330
109.
Zurück zum Zitat Gao W, Singh N, Song L et al (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500 Gao W, Singh N, Song L et al (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500
110.
Zurück zum Zitat Fu L, Wang A, Lai G et al (2018) A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Mikrochim Acta 185:87 Fu L, Wang A, Lai G et al (2018) A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Mikrochim Acta 185:87
111.
Zurück zum Zitat Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803 Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803
112.
Zurück zum Zitat Zhang Y, Tang T, Girit C, Hao Z, Martin M, Zettl A, Crommie M, Shen Y et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823 Zhang Y, Tang T, Girit C, Hao Z, Martin M, Zettl A, Crommie M, Shen Y et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823
113.
Zurück zum Zitat Ni Z, Yu T, Lu Y, Wang Y, Feng Y, Shen Z (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305 Ni Z, Yu T, Lu Y, Wang Y, Feng Y, Shen Z (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305
114.
Zurück zum Zitat Ghosh D, Lim J, Narayan R, Kim S (2016) High energy density all solid state asymmetric pseudocapacitors based on free standing reduced graphene oxide-Co3O4 composite aerogel electrodes. ACS Appl Mater Interfaces 8:22253–22260 Ghosh D, Lim J, Narayan R, Kim S (2016) High energy density all solid state asymmetric pseudocapacitors based on free standing reduced graphene oxide-Co3O4 composite aerogel electrodes. ACS Appl Mater Interfaces 8:22253–22260
115.
Zurück zum Zitat Feng L, Wang K, Zhang X, Sun X, Li C, Ge X, Ma Y (2018) Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463 Feng L, Wang K, Zhang X, Sun X, Li C, Ge X, Ma Y (2018) Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463
116.
Zurück zum Zitat Wang Q, Jian M, Wang C, Zhang Y (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657 Wang Q, Jian M, Wang C, Zhang Y (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657
117.
Zurück zum Zitat Kymakis E, Savva K, Stylianakis M, Fotakis C, Stratakis E (2013) Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater 23:2742–2749 Kymakis E, Savva K, Stylianakis M, Fotakis C, Stratakis E (2013) Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv Funct Mater 23:2742–2749
118.
Zurück zum Zitat Guo L, Shao R, Zhang Y (2012) Bandgap tailoring and synchronous microdevices patterning of graphene oxides. J Phys Chem C 116:3594–3599 Guo L, Shao R, Zhang Y (2012) Bandgap tailoring and synchronous microdevices patterning of graphene oxides. J Phys Chem C 116:3594–3599
119.
Zurück zum Zitat Meng F, Zheng H, Chang Y, Zhao Y, Li M, Wang C, Sun Y, Liu J (2018) One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE T Nanotechnol 17:212–219 Meng F, Zheng H, Chang Y, Zhao Y, Li M, Wang C, Sun Y, Liu J (2018) One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE T Nanotechnol 17:212–219
120.
Zurück zum Zitat Tian H, Fan H, Ma J, Liu Z, Ma L, Lei S, Fang J, Long C (2018) Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J Hazard Mater 341:102–111 Tian H, Fan H, Ma J, Liu Z, Ma L, Lei S, Fang J, Long C (2018) Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J Hazard Mater 341:102–111
121.
Zurück zum Zitat Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G et al (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nanomicro Lett 8:95–119 Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G et al (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nanomicro Lett 8:95–119
122.
Zurück zum Zitat Wong T, Kang S, Tang S, Smythe E, Hatton B, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447 Wong T, Kang S, Tang S, Smythe E, Hatton B, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447
123.
Zurück zum Zitat Zheng Y, Bai H, Huang Z, Tian X, Nie F, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643 Zheng Y, Bai H, Huang Z, Tian X, Nie F, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643
124.
Zurück zum Zitat Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734 Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734
125.
Zurück zum Zitat Feng L, Li S, Li Y et al (2003) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860 Feng L, Li S, Li Y et al (2003) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860
126.
Zurück zum Zitat Li X, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368 Li X, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368
127.
Zurück zum Zitat Jiang H, Zhang Y, Han D, Xia H, Feng J, Chen Q, Hong Z, Sun H (2014) Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv Funct Mater 24:4595–4602 Jiang H, Zhang Y, Han D, Xia H, Feng J, Chen Q, Hong Z, Sun H (2014) Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv Funct Mater 24:4595–4602
128.
Zurück zum Zitat Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N, Jiang L, Qu L (2013) Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Ange Chem Int Ed 52:10482–10486 Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N, Jiang L, Qu L (2013) Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Ange Chem Int Ed 52:10482–10486
129.
Zurück zum Zitat Han D, Zhang Y, Liu Y et al (2015) Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv Funct Mater 25:4548–4557 Han D, Zhang Y, Liu Y et al (2015) Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv Funct Mater 25:4548–4557
Metadaten
Titel
Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications
verfasst von
Haobo Jiang
Bo Zhao
Yan Liu
Shuyi Li
Juan Liu
Yunyun Song
Dandan Wang
Wei Xin
Luquan Ren
Publikationsdatum
16.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03981-z

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Science 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.