Skip to main content
Erschienen in: Journal of Computational Electronics 4/2017

27.10.2017 | S.I. : Computational Electronics of Emerging Memory Elements

Review of physics-based compact models for emerging nonvolatile memories

verfasst von: Nuo Xu, Pai-Yu Chen, Jing Wang, Woosung Choi, Keun-Ho Lee, Eun Seung Jung, Shimeng Yu

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A generic compact modeling methodology for emerging nonvolatile memories is proposed by coupling comprehensive physical equations from multiple domains (e.g., electrical, thermal, magnetic, phase transitions). This concept has been applied to three most promising emerging memory candidates: PCM, STT-MRAM, and RRAM to study their device physics as well as to evaluate their circuit-level performance. The models’ good predictability to experiments and their effectiveness in large-scale circuit simulation suggest their unique role in emerging memory research and development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu, S., Chen, P.-Y.: Emerging memory technologies: recent trends and prospects. IEEE Solid State Circuits Mag. 8(2), 43–56 (2016)CrossRef Yu, S., Chen, P.-Y.: Emerging memory technologies: recent trends and prospects. IEEE Solid State Circuits Mag. 8(2), 43–56 (2016)CrossRef
2.
Zurück zum Zitat Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450–1455 (1968)CrossRef Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450–1455 (1968)CrossRef
3.
Zurück zum Zitat Wong, H.-S.P., et al.: Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010)CrossRef Wong, H.-S.P., et al.: Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010)CrossRef
4.
Zurück zum Zitat Lai, S.: Current status of the phase change memory and its future. In: IEEE International Electron Device Meeting (IEDM), 10.1 (2003) Lai, S.: Current status of the phase change memory and its future. In: IEEE International Electron Device Meeting (IEDM), 10.1 (2003)
5.
Zurück zum Zitat Burr, G.W., et al.: Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52(4), 449–464 (2008)CrossRef Burr, G.W., et al.: Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52(4), 449–464 (2008)CrossRef
6.
Zurück zum Zitat Song, Y.J., et al.: Highly reliable 256 Mb PRAM with advanced ring contact technology and novel encapsulating technology. In: IEEE symposium on VLSI technology, pp. 118–119 (2006) Song, Y.J., et al.: Highly reliable 256 Mb PRAM with advanced ring contact technology and novel encapsulating technology. In: IEEE symposium on VLSI technology, pp. 118–119 (2006)
7.
Zurück zum Zitat Tehrani, S., et al.: Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 91, 703–714 (2003)CrossRef Tehrani, S., et al.: Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 91, 703–714 (2003)CrossRef
8.
Zurück zum Zitat Albrecht, T.R., et al.: Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51(5), 0800342 (2015)CrossRef Albrecht, T.R., et al.: Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51(5), 0800342 (2015)CrossRef
9.
Zurück zum Zitat Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–7 (1996)CrossRef Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–7 (1996)CrossRef
10.
Zurück zum Zitat Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)CrossRef Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)CrossRef
11.
Zurück zum Zitat Katine, J., et al.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)CrossRef Katine, J., et al.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)CrossRef
12.
Zurück zum Zitat Chen, E., et al.: Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46(6), 1873–1878 (2010)CrossRef Chen, E., et al.: Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46(6), 1873–1878 (2010)CrossRef
13.
Zurück zum Zitat Yoda, H., et al.: Progress of STT-MRAM technology and the effect on normally-off computing systems. In: IEEE International Electron Device Meeting (IEDM), pp. 259–262 (2012) Yoda, H., et al.: Progress of STT-MRAM technology and the effect on normally-off computing systems. In: IEEE International Electron Device Meeting (IEDM), pp. 259–262 (2012)
14.
Zurück zum Zitat Watanabe, Y., et al.: Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO\(_{3}\) single crystals. Appl. Phys. Lett. 78, 3738–3740 (2001)CrossRef Watanabe, Y., et al.: Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO\(_{3}\) single crystals. Appl. Phys. Lett. 78, 3738–3740 (2001)CrossRef
15.
Zurück zum Zitat Wong, H.S.-P., et al.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)CrossRef Wong, H.S.-P., et al.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)CrossRef
16.
Zurück zum Zitat Waser, R., et al.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)CrossRef Waser, R., et al.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)CrossRef
17.
Zurück zum Zitat Xu, N., et al.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92(23), 232112 (2008)CrossRef Xu, N., et al.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92(23), 232112 (2008)CrossRef
21.
Zurück zum Zitat Gao B., et al.: Oxide-based RRAM switching mechanism: a new ion-transport-recombination model. In: IEEE International Electron Devices Meeting (IEDM). (2008) Gao B., et al.: Oxide-based RRAM switching mechanism: a new ion-transport-recombination model. In: IEEE International Electron Devices Meeting (IEDM). (2008)
22.
Zurück zum Zitat Makarov, A., et al.: Stochastic modeling hysteresis and resistive switching in bipolar oxide-based memory. In: IEEE Simulation of Semiconductor Devices and Process (SISPAD), pp. 237–240 (2010) Makarov, A., et al.: Stochastic modeling hysteresis and resistive switching in bipolar oxide-based memory. In: IEEE Simulation of Semiconductor Devices and Process (SISPAD), pp. 237–240 (2010)
23.
Zurück zum Zitat Lu, D.: Compact models for future generation CMOS. University of California, Berkeley, Ph.D. Thesis (2011) Lu, D.: Compact models for future generation CMOS. University of California, Berkeley, Ph.D. Thesis (2011)
24.
Zurück zum Zitat Simulation Program with Integrated Circuit Emphasis (SPICE), University of California, Berkeley, (1973) Simulation Program with Integrated Circuit Emphasis (SPICE), University of California, Berkeley, (1973)
25.
Zurück zum Zitat Toshiyoshi H., et al.: A multi-physics simulation technique for integrated MEMS. In: IEEE International Electron Devices Meeting (IEDM), pp. 123–126 (2012) Toshiyoshi H., et al.: A multi-physics simulation technique for integrated MEMS. In: IEEE International Electron Devices Meeting (IEDM), pp. 123–126 (2012)
26.
Zurück zum Zitat An RRE is a Langevin equation without the Gaussian white noise term. Refer to P. Langevin, On the Theory of Brownian Motion, C. R. Acad. Sci., 146, pp. 530–533 (1908) An RRE is a Langevin equation without the Gaussian white noise term. Refer to P. Langevin, On the Theory of Brownian Motion, C. R. Acad. Sci., 146, pp. 530–533 (1908)
28.
Zurück zum Zitat Ielmini, D., et al.: Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007)CrossRef Ielmini, D., et al.: Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007)CrossRef
29.
Zurück zum Zitat Ventrice, D., et al.: A phase change memory compact model for multilevel applications. IEEE Electron Dev. Lett. 28(11), 973–975 (2007)CrossRef Ventrice, D., et al.: A phase change memory compact model for multilevel applications. IEEE Electron Dev. Lett. 28(11), 973–975 (2007)CrossRef
30.
Zurück zum Zitat Chen, I.-R., et al.: Compact thermal model for vertical nanowire phase-change memory cells. IEEE Trans. Electron Dev. 56(7), 1523–1528 (2009)CrossRef Chen, I.-R., et al.: Compact thermal model for vertical nanowire phase-change memory cells. IEEE Trans. Electron Dev. 56(7), 1523–1528 (2009)CrossRef
31.
Zurück zum Zitat Xu, N., et al.: Multi-domain compact modeling for GeSbTe-based memory and selector devices and simulation for large-scale 3-D cross-point memory arrays. In: IEEE International Electron Device Meeting (IEDM), pp. 192–195 (2015) Xu, N., et al.: Multi-domain compact modeling for GeSbTe-based memory and selector devices and simulation for large-scale 3-D cross-point memory arrays. In: IEEE International Electron Device Meeting (IEDM), pp. 192–195 (2015)
32.
Zurück zum Zitat Anbarasu, M., et al.: Nanosecond threshold switching of GeTe\(_{6}\) cells and their potential as selector devices. Appl. Phys. Lett. 100, 143505 (2012)CrossRef Anbarasu, M., et al.: Nanosecond threshold switching of GeTe\(_{6}\) cells and their potential as selector devices. Appl. Phys. Lett. 100, 143505 (2012)CrossRef
33.
Zurück zum Zitat Schmithusen, B., et al.: Phase-change memory simulations using an analytical phase space model. IEEE Simulation of Semiconductor Devices and Process (SISPAD), 3.6.1 (2008) Schmithusen, B., et al.: Phase-change memory simulations using an analytical phase space model. IEEE Simulation of Semiconductor Devices and Process (SISPAD), 3.6.1 (2008)
34.
Zurück zum Zitat Radaelli, A., et al.: Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101 (2008)CrossRef Radaelli, A., et al.: Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101 (2008)CrossRef
35.
Zurück zum Zitat Peng, C., et al.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J. Appl. Phys. 82, 4183–4191 (1997)CrossRef Peng, C., et al.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J. Appl. Phys. 82, 4183–4191 (1997)CrossRef
36.
Zurück zum Zitat Senkadar, S., et al.: Model for phase-change of Ge\(_{2}\)Sb\(_{2}\)Te\(_{5}\) in optical and electrical memory devices. J. Appl. Phys. 95, 504–511 (2004)CrossRef Senkadar, S., et al.: Model for phase-change of Ge\(_{2}\)Sb\(_{2}\)Te\(_{5}\) in optical and electrical memory devices. J. Appl. Phys. 95, 504–511 (2004)CrossRef
37.
Zurück zum Zitat Zhang, L., et al.: One-selector one-resistor cross-point array with threshold switching selector. IEEE Trans. Electron Dev. 62(10), 3250–3257 (2015)CrossRef Zhang, L., et al.: One-selector one-resistor cross-point array with threshold switching selector. IEEE Trans. Electron Dev. 62(10), 3250–3257 (2015)CrossRef
38.
Zurück zum Zitat International Technology Roadmap for Semiconductors (ITRS), 2014 edition International Technology Roadmap for Semiconductors (ITRS), 2014 edition
39.
Zurück zum Zitat Kim, S.-B., et al.: Thermal disturbance and its impact on reliability of phase-change memory studied by the micro-thermal stage. In: IEEE Reliability Physics Symposium, pp. 99–103 (2010) Kim, S.-B., et al.: Thermal disturbance and its impact on reliability of phase-change memory studied by the micro-thermal stage. In: IEEE Reliability Physics Symposium, pp. 99–103 (2010)
40.
Zurück zum Zitat Panagopoulos, G.D., et al.: Physics-based SPICE-compatible compact model for simulating hybrid MTJ/CMOS circuits. IEEE Trans. Electron Dev. 60(9), 2808–2814 (2013)CrossRef Panagopoulos, G.D., et al.: Physics-based SPICE-compatible compact model for simulating hybrid MTJ/CMOS circuits. IEEE Trans. Electron Dev. 60(9), 2808–2814 (2013)CrossRef
41.
Zurück zum Zitat Fong, X.: et al.: KNACK: a hybrid spin-charge mixed-mode simulator for evaluating different genres of spin-transfer torque MRAM bit-cells. In: IEEE simulation of semiconductor devices and process (SISPAD), pp. 51–54 (2011) Fong, X.: et al.: KNACK: a hybrid spin-charge mixed-mode simulator for evaluating different genres of spin-transfer torque MRAM bit-cells. In: IEEE simulation of semiconductor devices and process (SISPAD), pp. 51–54 (2011)
42.
Zurück zum Zitat Kazemi, M., et al.: Adaptive compact magnetic tunnel junction model. IEEE Trans. Electron Dev. 61(11), 3883–3891 (2014)CrossRef Kazemi, M., et al.: Adaptive compact magnetic tunnel junction model. IEEE Trans. Electron Dev. 61(11), 3883–3891 (2014)CrossRef
43.
Zurück zum Zitat Madec, M., et al.: Compact modeling of a magnetic tunnel junction—Part II: tunneling current model. IEEE Trans. Electron Dev. 57(6), 1416–1424 (2010)CrossRef Madec, M., et al.: Compact modeling of a magnetic tunnel junction—Part II: tunneling current model. IEEE Trans. Electron Dev. 57(6), 1416–1424 (2010)CrossRef
44.
Zurück zum Zitat Xu, N.: et al.: Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology. In: IEEE international electron device meeting (IEDM), pp. 735–738 (2015) Xu, N.: et al.: Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology. In: IEEE international electron device meeting (IEDM), pp. 735–738 (2015)
45.
Zurück zum Zitat Kim, J.-H., et al.: Verification on the extreme scalability of STT-MRAM without loss of thermal stability below 15 nm MTJ cell. In: IEEE symposium on VLSI technology, pp. 60–61 (2014) Kim, J.-H., et al.: Verification on the extreme scalability of STT-MRAM without loss of thermal stability below 15 nm MTJ cell. In: IEEE symposium on VLSI technology, pp. 60–61 (2014)
46.
Zurück zum Zitat Slonczewski, J.C.: Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989)CrossRef Slonczewski, J.C.: Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989)CrossRef
47.
Zurück zum Zitat Brinkman, W.F., et al.: Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915–1921 (1970)CrossRef Brinkman, W.F., et al.: Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915–1921 (1970)CrossRef
48.
Zurück zum Zitat Hiramatsu, Y., et al.: NEGF simulation of spin-transfer torque in magnetic tunnel junctions. In: IMFEDK, pp. 102–103 (2011) Hiramatsu, Y., et al.: NEGF simulation of spin-transfer torque in magnetic tunnel junctions. In: IMFEDK, pp. 102–103 (2011)
49.
Zurück zum Zitat Zhu, Z.-G., et al.: Effect of spin-flip scattering on electrical transport in magnetic tunnel junctions. Phys. Lett. A 300, 658–665 (2002)CrossRef Zhu, Z.-G., et al.: Effect of spin-flip scattering on electrical transport in magnetic tunnel junctions. Phys. Lett. A 300, 658–665 (2002)CrossRef
50.
Zurück zum Zitat Beleggia, M., et al.: Demagnetization factors for elliptic cylinders. J. Phys. D 38, 3333–3342 (2005)CrossRef Beleggia, M., et al.: Demagnetization factors for elliptic cylinders. J. Phys. D 38, 3333–3342 (2005)CrossRef
51.
Zurück zum Zitat Khalkovski, A.V., et al.: Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D 46, 074001 (2013)CrossRef Khalkovski, A.V., et al.: Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D 46, 074001 (2013)CrossRef
52.
Zurück zum Zitat Guan, X., et al.: A SPICE compact model of metal oxide resistive switching memory with variations. IEEE Electron Dev. Lett. 33(10), 1405–1407 (2012)CrossRef Guan, X., et al.: A SPICE compact model of metal oxide resistive switching memory with variations. IEEE Electron Dev. Lett. 33(10), 1405–1407 (2012)CrossRef
53.
Zurück zum Zitat Huang, P., et al.: A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans. Electron Dev. 60(12), 4090–4097 (2013)CrossRef Huang, P., et al.: A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans. Electron Dev. 60(12), 4090–4097 (2013)CrossRef
54.
Zurück zum Zitat Bocquet, M., et al.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Dev. 61(3), 674–681 (2014)CrossRef Bocquet, M., et al.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Dev. 61(3), 674–681 (2014)CrossRef
56.
Zurück zum Zitat Chen, Y.Y., et al.: Balancing SET/RESET pulse for endurance in 1T1R bipolar RRAM. IEEE Trans. Electron Dev. 59(12), 3243–3249 (2012)CrossRef Chen, Y.Y., et al.: Balancing SET/RESET pulse for endurance in 1T1R bipolar RRAM. IEEE Trans. Electron Dev. 59(12), 3243–3249 (2012)CrossRef
57.
Zurück zum Zitat Chen, Y.Y., et al.: Improvement of data retention in HfO\(_{2}\)/Hf 1T1R RRAM cell under low operating current. In: IEEE International Electron Devices Meeting (IEDM), pp. 252–255 (2013) Chen, Y.Y., et al.: Improvement of data retention in HfO\(_{2}\)/Hf 1T1R RRAM cell under low operating current. In: IEEE International Electron Devices Meeting (IEDM), pp. 252–255 (2013)
58.
Zurück zum Zitat Xu, N., et al.: A unified physical model of switching behavior in oxide-based RRAM. In: IEEE Symposium on VLSI Technology, pp. 100–101 (2008) Xu, N., et al.: A unified physical model of switching behavior in oxide-based RRAM. In: IEEE Symposium on VLSI Technology, pp. 100–101 (2008)
59.
Zurück zum Zitat Fantini, A., et al.: Intrinsic switching variability in HfO\(_{2}\) RRAM. IEEE International Memory Workshop (IMW), pp. 30–33 (2013) Fantini, A., et al.: Intrinsic switching variability in HfO\(_{2}\) RRAM. IEEE International Memory Workshop (IMW), pp. 30–33 (2013)
60.
Zurück zum Zitat Yu, S., et al.: A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling. In: IEEE International Electron Device Meeting (IEDM), pp. 239–242 (2012) Yu, S., et al.: A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling. In: IEEE International Electron Device Meeting (IEDM), pp. 239–242 (2012)
62.
Zurück zum Zitat Yalon, E., et al.: Thermometry of filamentary RRAM devices. IEEE Trans. Electron Dev. 62(9), 2972–2977 (2015)CrossRef Yalon, E., et al.: Thermometry of filamentary RRAM devices. IEEE Trans. Electron Dev. 62(9), 2972–2977 (2015)CrossRef
63.
Zurück zum Zitat Guan, X., et al.: On the switching parameter variation of metal oxide RRAM—part I: physical modeling and simulation methodology. IEEE Trans. Electron Dev. 59(4), 1172–1182 (2012)CrossRef Guan, X., et al.: On the switching parameter variation of metal oxide RRAM—part I: physical modeling and simulation methodology. IEEE Trans. Electron Dev. 59(4), 1172–1182 (2012)CrossRef
64.
Zurück zum Zitat Boniardi, M., et al.: A physics-based model of electrical conduction decrease with time in amorphous Ge\(_{2}\)Sb\(_{2}\)Te\(_{5}\). J. Appl. Phys. 105, 084506 (2009)CrossRef Boniardi, M., et al.: A physics-based model of electrical conduction decrease with time in amorphous Ge\(_{2}\)Sb\(_{2}\)Te\(_{5}\). J. Appl. Phys. 105, 084506 (2009)CrossRef
65.
Zurück zum Zitat Chien, W.C., et al.: Reliability study of a 128 Mb phase-change memory chip implemented with doped Ga–Sb–Ge with extraordinary thermal stability. In: IEEE international electron devices meeting (IEDM), pp. 552–555 (2016) Chien, W.C., et al.: Reliability study of a 128 Mb phase-change memory chip implemented with doped Ga–Sb–Ge with extraordinary thermal stability. In: IEEE international electron devices meeting (IEDM), pp. 552–555 (2016)
66.
Zurück zum Zitat Zhang, S.: Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000)CrossRef Zhang, S.: Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000)CrossRef
67.
Zurück zum Zitat Ciocchini, N., et al.: Impact of thermoelectric effects on phase change memory characteristics. IEEE Trans. Electron Dev. 62(10), 3264–3271 (2015)CrossRef Ciocchini, N., et al.: Impact of thermoelectric effects on phase change memory characteristics. IEEE Trans. Electron Dev. 62(10), 3264–3271 (2015)CrossRef
68.
Zurück zum Zitat Hsu, C.W., et al.: Homogeneous barrier modulation of TaO\(_{x}\)/TiO\(_{2}\) bilayer for ultra-high endurance three-dimensional storage-class memory. Nanotechnology 25, 165202 (2014)CrossRef Hsu, C.W., et al.: Homogeneous barrier modulation of TaO\(_{x}\)/TiO\(_{2}\) bilayer for ultra-high endurance three-dimensional storage-class memory. Nanotechnology 25, 165202 (2014)CrossRef
Metadaten
Titel
Review of physics-based compact models for emerging nonvolatile memories
verfasst von
Nuo Xu
Pai-Yu Chen
Jing Wang
Woosung Choi
Keun-Ho Lee
Eun Seung Jung
Shimeng Yu
Publikationsdatum
27.10.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1098-0

Weitere Artikel der Ausgabe 4/2017

Journal of Computational Electronics 4/2017 Zur Ausgabe

S.I.: Computational Electronics of Emerging Memory Elements

: a physical model for RRAM devices simulation

S.I. : Computational Electronics of Emerging Memory Elements

Toward reliable RRAM performance: macro- and micro-analysis of operation processes

S.I. : Computational Electronics of Emerging Memory Elements

Memory selector devices and crossbar array design: a modeling-based assessment

Neuer Inhalt