Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Review of the Adaptive On-time Control Circuits for Buck Converters

verfasst von : Wen-Wei Chen, Jiann-Fuh Chen

Erschienen in: Control Techniques for Power Converters with Integrated Circuit

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many novel control circuits, such as central processing unit and electronic devices, have been reported for power supplies to meet stringent requirements in recent years. These devices can reduce standby power loss and increase the load transient response to achieve high performance and low loss of system design. Owing to the rapid development of microprocessors, over a billion transistors have been integrated into one processor. The power converter must be able to regulate its output voltage to be near constant as the load current demand varies anywhere from zero to full load, even when the change occurs in a relatively short time. A good performance of load transient response can save on output capacitor size and cost. Meanwhile, settling time and stability can be displayed in the load transient response, so power converter performance must be tested. Based on these requirements, the conventional constant on-time control circuit is widely used in central processing unit applications and other electronic devices with high slew rates because of the advantages of faster load transient response and better light-load efficiency compared with the current-mode control circuit. However, the on-time generator circuit of the conventional constant on-time control circuit can generate the fixed on-time width to control the driver circuit and achieve the voltage regulation if the conventional constant on-time control circuit wants to regulate a high VOUT and an increase in switching loss occurs, so this chapter is showed to compare different types of control circuit for buck converter like conventional constant on-time control circuit for buck converter, adaptive on-time control circuits for buck converter, ripple-based adaptive on-time control circuit with virtual inductor current ripple for buck converter, and current-mode adaptive on-time control circuit for buck converter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Stanford, Power technology roadmap for microprocessor voltage regulators. Presentation at PSMA, Feb 2003 E. Stanford, Power technology roadmap for microprocessor voltage regulators. Presentation at PSMA, Feb 2003
3.
Zurück zum Zitat K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, F.C. Lee, Adaptive voltage position design for voltage regulators, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 272–278, 2004 K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, F.C. Lee, Adaptive voltage position design for voltage regulators, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 272–278, 2004
4.
Zurück zum Zitat H. Mao, L. Yao, C. Wang, I. Batarseh, Analysis of Inductor current sharing in non isolated and isolated Multiphase dc–dc converters. IEEE Trans. Ind. Electron. 54(6), 3379–3388, Dec 2007 H. Mao, L. Yao, C. Wang, I. Batarseh, Analysis of Inductor current sharing in non isolated and isolated Multiphase dc–dc converters. IEEE Trans. Ind. Electron. 54(6), 3379–3388, Dec 2007
5.
Zurück zum Zitat P.-W. Lee, Y.-S. Lee, D.K.W. Cheng, X.-C. Liu, Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans. Ind. Electron. 47(4), 787–795 (2000)CrossRef P.-W. Lee, Y.-S. Lee, D.K.W. Cheng, X.-C. Liu, Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans. Ind. Electron. 47(4), 787–795 (2000)CrossRef
6.
Zurück zum Zitat H.N. Nagaraja, D. Kastha, A. Patra, Design principles of a symmetrically coupled inductor structure for multiphase synchronous buck converters. IEEE Trans. Ind. Electron. 58(3), 988–997 (2011)CrossRef H.N. Nagaraja, D. Kastha, A. Patra, Design principles of a symmetrically coupled inductor structure for multiphase synchronous buck converters. IEEE Trans. Ind. Electron. 58(3), 988–997 (2011)CrossRef
7.
Zurück zum Zitat L.-P. Wong, D.K.-W. Cheng, M.H.L. Chow, Y.-S. Lee, Interleaved three-phase forward converter using integrated transformer. IEEE Trans. Ind. Electron. 52(5), 1246–1260 (2005)CrossRef L.-P. Wong, D.K.-W. Cheng, M.H.L. Chow, Y.-S. Lee, Interleaved three-phase forward converter using integrated transformer. IEEE Trans. Ind. Electron. 52(5), 1246–1260 (2005)CrossRef
8.
Zurück zum Zitat J. Abu-Qahouq, H. Mao, I. Batarseh, Multiphase voltage-mode hysteretic controlled dc–dc converter with novel current sharing. IEEE Trans. Power Electron. 19(6), 1397–1407 (2004)CrossRef J. Abu-Qahouq, H. Mao, I. Batarseh, Multiphase voltage-mode hysteretic controlled dc–dc converter with novel current sharing. IEEE Trans. Power Electron. 19(6), 1397–1407 (2004)CrossRef
9.
Zurück zum Zitat H. Mao, L. Yao, C. Wang, I. Batarseh, Analysis of inductor current sharing in non isolated and isolated multiphase dc–dc converters. IEEE Trans. Ind. Electron. 54(6), 3379–3388, Dec 2007 H. Mao, L. Yao, C. Wang, I. Batarseh, Analysis of inductor current sharing in non isolated and isolated multiphase dc–dc converters. IEEE Trans. Ind. Electron. 54(6), 3379–3388, Dec 2007
10.
Zurück zum Zitat P.-W. Lee, Y.-S. Lee, D.K.W. Cheng, X.-C. Liu, Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans. Ind. Electron 47(4), 787–795 (2000)CrossRef P.-W. Lee, Y.-S. Lee, D.K.W. Cheng, X.-C. Liu, Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans. Ind. Electron 47(4), 787–795 (2000)CrossRef
11.
Zurück zum Zitat H.N. Nagaraja, D. Kastha, A. Patra, Design principles of a symmetrically coupled inductor structure for multiphase synchronous buck converters. IEEE Trans. Ind. Electron 58(3), 988–997 (2011)CrossRef H.N. Nagaraja, D. Kastha, A. Patra, Design principles of a symmetrically coupled inductor structure for multiphase synchronous buck converters. IEEE Trans. Ind. Electron 58(3), 988–997 (2011)CrossRef
12.
Zurück zum Zitat L.-P. Wong, D.K.-W. Cheng, M.H.L. Chow, Y.-S. Lee, Interleaved three-phase forward converter using integrated transformer. IEEE Trans. Ind. Electron. 52(5), 1246–1260 (2005)CrossRef L.-P. Wong, D.K.-W. Cheng, M.H.L. Chow, Y.-S. Lee, Interleaved three-phase forward converter using integrated transformer. IEEE Trans. Ind. Electron. 52(5), 1246–1260 (2005)CrossRef
13.
Zurück zum Zitat J. Abu-Qahouq, H. Mao, I. Batarseh, Multiphase voltage-mode hysteretic controlled dc–dc converter with novel current sharing. IEEE Trans. Power Electron. 19(6), 1397–1407 (2004)CrossRef J. Abu-Qahouq, H. Mao, I. Batarseh, Multiphase voltage-mode hysteretic controlled dc–dc converter with novel current sharing. IEEE Trans. Power Electron. 19(6), 1397–1407 (2004)CrossRef
14.
Zurück zum Zitat J.R. Huang, C.H. Wang, C.J. Lee, K.L. Tseng, and D. Chen, Native AVP control method for constant output impedance of DC power converters, in Proceedings IEEE Power Electronics Specialists Conference, pp. 2023–2028, 2007 J.R. Huang, C.H. Wang, C.J. Lee, K.L. Tseng, and D. Chen, Native AVP control method for constant output impedance of DC power converters, in Proceedings IEEE Power Electronics Specialists Conference, pp. 2023–2028, 2007
15.
Zurück zum Zitat A. Waizman, C.Y. Chung, Resonant free power network design using extended adaptive voltage positioning (EAVP) methodology. IEEE Trans. Adv. Packag. 24, 236–244 (2001)CrossRef A. Waizman, C.Y. Chung, Resonant free power network design using extended adaptive voltage positioning (EAVP) methodology. IEEE Trans. Adv. Packag. 24, 236–244 (2001)CrossRef
16.
Zurück zum Zitat M. Lee, D. Chen, K. Huang, E. Tseng and B. Tai, Compensator design for adaptive voltage position (AVP) for multiphase VRMs, in Proceedings IEEE Power Electronics Specialists Conference, 2006 M. Lee, D. Chen, K. Huang, E. Tseng and B. Tai, Compensator design for adaptive voltage position (AVP) for multiphase VRMs, in Proceedings IEEE Power Electronics Specialists Conference, 2006
17.
Zurück zum Zitat K. Yao, Y. Meng, P. Xu, F.C. Lee, Design considerations for VRM transient response based on the output impedance, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 14–20, 2002 K. Yao, Y. Meng, P. Xu, F.C. Lee, Design considerations for VRM transient response based on the output impedance, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 14–20, 2002
18.
Zurück zum Zitat W.W. Chen, J.F. Chen, T.J. Liang, L.C. Wei, J.R. Huang, W.Y. Ting, A novel quick response of RBCOT with VIC ripple for buck converter. IEEE Trans. Power Electron. 28, 4299–4308 (2013)CrossRef W.W. Chen, J.F. Chen, T.J. Liang, L.C. Wei, J.R. Huang, W.Y. Ting, A novel quick response of RBCOT with VIC ripple for buck converter. IEEE Trans. Power Electron. 28, 4299–4308 (2013)CrossRef
19.
Zurück zum Zitat W.W. Chen, J.F. Chen, T.J. Liang, J.R. Huang, L.C. Wei, W.Y. Ting, Implementing dynamic quick response with high-frequency feedback control of the deformable constant on-time control for buck converter on-chip. IET Power Electron 6(4), 383–391 (2013)CrossRef W.W. Chen, J.F. Chen, T.J. Liang, J.R. Huang, L.C. Wei, W.Y. Ting, Implementing dynamic quick response with high-frequency feedback control of the deformable constant on-time control for buck converter on-chip. IET Power Electron 6(4), 383–391 (2013)CrossRef
20.
Zurück zum Zitat W.W. Chen, J.F. Chen, T.J. Liang, S.F. Hsiao, J.R. Huang, W.Y. Ting, Improved transient response using HFFC circuit of the CCRCOT with native AVP design for voltage regulators. IET Power Electron 6, 1948–1955 (2013)CrossRef W.W. Chen, J.F. Chen, T.J. Liang, S.F. Hsiao, J.R. Huang, W.Y. Ting, Improved transient response using HFFC circuit of the CCRCOT with native AVP design for voltage regulators. IET Power Electron 6, 1948–1955 (2013)CrossRef
21.
Zurück zum Zitat W.W. Chen, J.F. Chen, T.J. Liang, J.R. Huang, and W.Y. Ting, Improved Transient Response Using HFFC in Current-Mode CFCOT Control for Buck Converter, in Proceedings IEEE International Conference on Power Electronics and Drive Systems (PEDS), pp. 546–549 W.W. Chen, J.F. Chen, T.J. Liang, J.R. Huang, and W.Y. Ting, Improved Transient Response Using HFFC in Current-Mode CFCOT Control for Buck Converter, in Proceedings IEEE International Conference on Power Electronics and Drive Systems (PEDS), pp. 546–549
22.
Zurück zum Zitat C.J. Chen, D. Chen, C.W. Tseng, C.T. Tseng, Y.W. Chang, K.C. Wang, A Novel Ripple-Based Constant On-time Control with Virtual Inductor Current Ripple for Buck Converter with Ceramic Output Capacitors, in Proceedings IEEE Applied Energy Conversion Congress and Exposition conference, pp. 1244–1250, 2011 C.J. Chen, D. Chen, C.W. Tseng, C.T. Tseng, Y.W. Chang, K.C. Wang, A Novel Ripple-Based Constant On-time Control with Virtual Inductor Current Ripple for Buck Converter with Ceramic Output Capacitors, in Proceedings IEEE Applied Energy Conversion Congress and Exposition conference, pp. 1244–1250, 2011
23.
Zurück zum Zitat R. Redl, J. Sun, Ripple-based control of switching regulators an overview. IEEE Trans. Power Electron. 24, 2669–2680 (2009)CrossRef R. Redl, J. Sun, Ripple-based control of switching regulators an overview. IEEE Trans. Power Electron. 24, 2669–2680 (2009)CrossRef
24.
Zurück zum Zitat J. Sun, Characterization and performance comparison of ripple-based control for voltage regulator modules. IEEE Trans. Power Electron. 21, 346–353 (2006)CrossRef J. Sun, Characterization and performance comparison of ripple-based control for voltage regulator modules. IEEE Trans. Power Electron. 21, 346–353 (2006)CrossRef
25.
Zurück zum Zitat W. Huang, A new control for multi-phase buck converter with fast transient response, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 273–279, 2001 W. Huang, A new control for multi-phase buck converter with fast transient response, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 273–279, 2001
26.
Zurück zum Zitat J. Li, F.C. Lee, Modeling of V2 current-mode control, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 298–304, 2009 J. Li, F.C. Lee, Modeling of V2 current-mode control, in Proceedings IEEE Applied Power Electronics Conference and Exposition conference, pp. 298–304, 2009
27.
Zurück zum Zitat K.D.T. Ngo, S.K. Mishra, M. Walters, Synthetic-ripple modulator for synchronous buck converter. Proc. IEEE Power Electron. 3, 148–151 (2005) K.D.T. Ngo, S.K. Mishra, M. Walters, Synthetic-ripple modulator for synchronous buck converter. Proc. IEEE Power Electron. 3, 148–151 (2005)
28.
Zurück zum Zitat Y.H. Lee, S.J. Wang, K.H. Chen, Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor. Proc. IEEE Trans. Power Electron. 25, 829–838 (2010)CrossRef Y.H. Lee, S.J. Wang, K.H. Chen, Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor. Proc. IEEE Trans. Power Electron. 25, 829–838 (2010)CrossRef
29.
Zurück zum Zitat M.Y. Yen, P. Mok, A constant frequency output-ripple voltage-based buck converter without using large ESR capacitor. IEEE Trans. Circuits Syst. 55, 748–752 (2008) M.Y. Yen, P. Mok, A constant frequency output-ripple voltage-based buck converter without using large ESR capacitor. IEEE Trans. Circuits Syst. 55, 748–752 (2008)
30.
Zurück zum Zitat K.Y. Cheng, F. Yu, P. Mattavelli, F.C. Lee, Characterization and performance comparison of digital V2-type constant on-time control for buck converters, IEEE Control and Modeling for Power Electronics conference, pp. 1–6, June 2010 K.Y. Cheng, F. Yu, P. Mattavelli, F.C. Lee, Characterization and performance comparison of digital V2-type constant on-time control for buck converters, IEEE Control and Modeling for Power Electronics conference, pp. 1–6, June 2010
31.
Zurück zum Zitat J. Li, Current-mode control: modeling and its digital application Ph.D. thesis, Virginia Polytechnic Institute and State University, 2009 J. Li, Current-mode control: modeling and its digital application Ph.D. thesis, Virginia Polytechnic Institute and State University, 2009
32.
Zurück zum Zitat J. Li and F.C. Lee, New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans. Power Electron. 1218–1230, May 2010 J. Li and F.C. Lee, New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans. Power Electron. 1218–1230, May 2010
33.
Zurück zum Zitat S.J. Wang, Y.H. Lee, Y.C. Lai, K.H. Chen, Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor, in Proceedings IEEE Custom Integrated Circuits Conference, pp. 211–214, 2009 S.J. Wang, Y.H. Lee, Y.C. Lai, K.H. Chen, Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor, in Proceedings IEEE Custom Integrated Circuits Conference, pp. 211–214, 2009
34.
Zurück zum Zitat R. Redl, G. Reizik, Switched noise filter for the buck converter using the output ripple as the PWM ramp, in Proceedings IEEE Appl. Power Electron. Conference, pp. 918–924, 2005 R. Redl, G. Reizik, Switched noise filter for the buck converter using the output ripple as the PWM ramp, in Proceedings IEEE Appl. Power Electron. Conference, pp. 918–924, 2005
35.
Zurück zum Zitat R. Redl and T. Schiff, A new family of enhanced ripple regulators for power-management applications, in Proceedings of International Exhibition and Conference Eur., Nuremburg, Germany, pp. 255–268, 2008 R. Redl and T. Schiff, A new family of enhanced ripple regulators for power-management applications, in Proceedings of International Exhibition and Conference Eur., Nuremburg, Germany, pp. 255–268, 2008
36.
Zurück zum Zitat W.W. Chen, J.F. Chen, T.J. Liang, Dynamic ramp control in current-mode adaptive on-time control for buck converter on chip, in Proceedings of IEEE Future Energy Electronics Conference and ECCE Asia (IFEEC 2017–ECCE Asia), pp. 280–285, 2017 W.W. Chen, J.F. Chen, T.J. Liang, Dynamic ramp control in current-mode adaptive on-time control for buck converter on chip, in Proceedings of IEEE Future Energy Electronics Conference and ECCE Asia (IFEEC 2017–ECCE Asia), pp. 280–285, 2017
37.
Zurück zum Zitat P.L. Wong, Performance improvements of multi-channel interleaving voltage regulator modules with integrated coupling inductors, Dissertation of Virginia Polytechnic Institute and State University, March 2001 P.L. Wong, Performance improvements of multi-channel interleaving voltage regulator modules with integrated coupling inductors, Dissertation of Virginia Polytechnic Institute and State University, March 2001
38.
Zurück zum Zitat S.K. Mishra, Design-oriented analysis of modern active droop controlled power supplies. IEEE Trans. Ind. Electron. 56(9), 3704–3708 (2009)CrossRef S.K. Mishra, Design-oriented analysis of modern active droop controlled power supplies. IEEE Trans. Ind. Electron. 56(9), 3704–3708 (2009)CrossRef
39.
Zurück zum Zitat J.A.A. Qahouq, V. Arikatla, Power converter with digital sensorless adaptive voltage positioning control scheme. IEEE Trans. Ind. Electron. 58(9), 4105–4116 (2010)CrossRef J.A.A. Qahouq, V. Arikatla, Power converter with digital sensorless adaptive voltage positioning control scheme. IEEE Trans. Ind. Electron. 58(9), 4105–4116 (2010)CrossRef
40.
Zurück zum Zitat Richtek Tech. Corp., Dual output 3-Phase + 2-Phase PWM controller for CPU and GPU Core power supply, RT8885A Datasheet, 2012 Richtek Tech. Corp., Dual output 3-Phase + 2-Phase PWM controller for CPU and GPU Core power supply, RT8885A Datasheet, 2012
41.
Zurück zum Zitat Richtek Tech. Corp., Multi-Phase PWM controller for CPU core power supply, RT8859 M Datasheet, 2014 Richtek Tech. Corp., Multi-Phase PWM controller for CPU core power supply, RT8859 M Datasheet, 2014
Metadaten
Titel
Review of the Adaptive On-time Control Circuits for Buck Converters
verfasst von
Wen-Wei Chen
Jiann-Fuh Chen
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7004-4_4