Skip to main content

2025 | OriginalPaper | Buchkapitel

Review of Various Neural Style Transfer Methods: A Comparative Study

verfasst von : Akash Goel, Palak Singh, Ragini Rani, Kalash Jain

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NST or neural style transfer has revolutionized the field of image processing by allowing the amalgamation of artistic styles to photographs. First introduced by Gatys et al., NST relies on a slow and iterative optimization process. However, recent advances have introduced faster and more efficient approaches, such as adaptive instance normalization (AdaIN) and Johnson's method. Gatys's method, which laid the foundation for NST, uses a convolutional neural network (CNN) to extract information about the content of an image and artistic features or style of an image. Based on reducing the heterogeneity between features of content images and style images, this procedure although ultramodern, is tedious. By reconceptualized model normalization, AdaIN initiated an innovative technique for rapid amalgamation of content and style features from random images. It terminates the requirement of time-consuming optimization by focusing on real-time artistic shift with excellent mouldability. Johnson's technique involves a unique learning experience using sensory loss and previously learned interactions to demonstrate high-contrast tasks This allows for better preparation through the use of localized activities and in imagery on instantaneous analysis, resulting in a greater mixture of the two parts. This research studies the comprehensive insight into NST techniques and their evolution, highlighting potential approaches for image processing and the resolution method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang, X., Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. In IEEE international conference on computer vision (ICCV). Huang, X., Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. In IEEE international conference on computer vision (ICCV).
2.
Zurück zum Zitat Johnson, J., Alahi, A., Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision. Johnson, J., Alahi, A., Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision.
3.
Zurück zum Zitat Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In IEEE conference on computer vision and pattern recognition. Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In IEEE conference on computer vision and pattern recognition.
4.
Zurück zum Zitat Wei, L.-Y., & Levoy, M. (2000). Fast texture synthesis using tree structured vector quantization. In Proceedings of the 27th annual conference on computer graphics and interactive techniques. Wei, L.-Y., & Levoy, M. (2000). Fast texture synthesis using tree structured vector quantization. In Proceedings of the 27th annual conference on computer graphics and interactive techniques.
5.
Zurück zum Zitat Elad, M., & Milanfar, P. (2017). Style transfer via texture synthesis. IEEE Transactions on Image Processing. Elad, M., & Milanfar, P. (2017). Style transfer via texture synthesis. IEEE Transactions on Image Processing.
6.
Zurück zum Zitat Gatys, L.A., Ecker, A.S., & Bethge, M. (2015). Texture synthesis using convolutional neural networks. In Part of advances in neural information processing systems, 28. Gatys, L.A., Ecker, A.S., & Bethge, M. (2015). Texture synthesis using convolutional neural networks. In Part of advances in neural information processing systems, 28.
7.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In International conference on learning representation. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In International conference on learning representation.
8.
Zurück zum Zitat Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., & Song, M. (2020). Neural style transfer: A review. IEEE Transactions on Visualization and Computer Graphics, 26(11), 3365–3385. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., & Song, M. (2020). Neural style transfer: A review. IEEE Transactions on Visualization and Computer Graphics, 26(11), 3365–3385.
9.
Zurück zum Zitat Mahendran, A., & Vedaldi, A. (2014). Understanding deep image representations by inverting them. In CVPR. Mahendran, A., & Vedaldi, A. (2014). Understanding deep image representations by inverting them. In CVPR.
10.
Zurück zum Zitat Dosovitskiy, A., & Brox, T. (2016). Inverting visual representations with convolutional networks. In IEEE conference on computer vision and pattern recognition. Dosovitskiy, A., & Brox, T. (2016). Inverting visual representations with convolutional networks. In IEEE conference on computer vision and pattern recognition.
11.
Zurück zum Zitat Dosovitskiy, A., & Brox, T. (2016). Generating images with perceptual similarity metrics based on deep networks. In Advances in neural information. Dosovitskiy, A., & Brox, T. (2016). Generating images with perceptual similarity metrics based on deep networks. In Advances in neural information.
12.
Zurück zum Zitat Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2015). Understanding neural networks through deep visualization. In ICML deep learning workshop. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2015). Understanding neural networks through deep visualization. In ICML deep learning workshop.
13.
Zurück zum Zitat Liu, F., Shen, C., & Lin, G. (2015). Deep convolutional neural fields for depth estimation from a single image. In CVPR. Liu, F., Shen, C., & Lin, G. (2015). Deep convolutional neural fields for depth estimation from a single image. In CVPR.
14.
Zurück zum Zitat Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. In Computer vision and pattern recognition. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. In Computer vision and pattern recognition.
15.
Zurück zum Zitat Li, C., & Wand, M. (2016). Precomputed real-time texture synthesis with Markovian generative adversarial networks. In European conference on computer vision. Li, C., & Wand, M. (2016). Precomputed real-time texture synthesis with Markovian generative adversarial networks. In European conference on computer vision.
16.
Zurück zum Zitat Yang, C.-Y., Ma, C., & Yang, M.-H. (2014). Single-image super-resolution: a benchmark. In European conference on computer vision. Yang, C.-Y., Ma, C., & Yang, M.-H. (2014). Single-image super-resolution: a benchmark. In European conference on computer vision.
17.
Zurück zum Zitat Khatter, H., Arif, S., Singh, U., Mathur, S., & Jain, S. (2021). Product recommendation system for E-commerce using collaborative filtering and textual clustering. In Third international conference on inventive research in computing applications (ICIRCA). Khatter, H., Arif, S., Singh, U., Mathur, S., & Jain, S. (2021). Product recommendation system for E-commerce using collaborative filtering and textual clustering. In Third international conference on inventive research in computing applications (ICIRCA).
18.
Zurück zum Zitat Sharma, S., Gupta, S., Gupta, D., Juneja, S., Singal, G., Dhiman, G., & Kautish, S. (2022). Recognition of Gurmukhi handwritten city names using deep learning and cloud computing. Hindawi Limited. Sharma, S., Gupta, S., Gupta, D., Juneja, S., Singal, G., Dhiman, G., & Kautish, S. (2022). Recognition of Gurmukhi handwritten city names using deep learning and cloud computing. Hindawi Limited.
Metadaten
Titel
Review of Various Neural Style Transfer Methods: A Comparative Study
verfasst von
Akash Goel
Palak Singh
Ragini Rani
Kalash Jain
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_12