Skip to main content
Erschienen in:

13.04.2024 | Review Paper

Review on data-driven approaches for improving the selectivity of MOX-sensors

verfasst von: Mohand Djeziri, Samir Benmoussa, Marc Bendahan, Jean-Luc Seguin

Erschienen in: Microsystem Technologies | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal Oxide sensors, thanks to their low cost, small size and wide recovery, are increasingly used in various industrial applications for the detection of gases and gas mixtures. However, due to their operating principle, these sensors are not selective enough, thereby preventing the expansion of their fields of application. The scientific community has tackled this issue by proposing methods and algorithms to improve the selectivity of these sensors. This paper provides an overview of existing approaches for detection and identification in the general case, as well as those used in the context of gas discrimination. A discussion of the methods used and the results announced is proposed to highlight their performance and to identify promising research directions and perspectives to allow a significant advance in research in this field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Araujo I, Gamboa J, Silva A (2019) Deep learning models for classification of gases detected by sensor arrays of artificial nose, Anais do XVI Encontro Nacional de Inteligencia Artificial e Computacional Araujo I, Gamboa J, Silva A (2019) Deep learning models for classification of gases detected by sensor arrays of artificial nose, Anais do XVI Encontro Nacional de Inteligencia Artificial e Computacional
Zurück zum Zitat Bajcsy R (1998) Active perception. Proceeding of IEEE 76:1075–1082 Bajcsy R (1998) Active perception. Proceeding of IEEE 76:1075–1082
Zurück zum Zitat Bakiler H, Güney S (2021) Estimation of concentration values of different gases based on long short-term memory by using electronic nose. Biomed Signal Process Control 69:102908CrossRef Bakiler H, Güney S (2021) Estimation of concentration values of different gases based on long short-term memory by using electronic nose. Biomed Signal Process Control 69:102908CrossRef
Zurück zum Zitat Beejaoui A, Guerin J, Agur K (2013) Modeling of a p-type resistive gas sensor in the presence of a reducing gas. Sens Actuators B Chem 181:340–347CrossRef Beejaoui A, Guerin J, Agur K (2013) Modeling of a p-type resistive gas sensor in the presence of a reducing gas. Sens Actuators B Chem 181:340–347CrossRef
Zurück zum Zitat Bochenkov VE, Sergeev GB (2010) Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Metal Oxide Nanostruct Appl 3:31–52 Bochenkov VE, Sergeev GB (2010) Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Metal Oxide Nanostruct Appl 3:31–52
Zurück zum Zitat Brahim-Belhaouari S, Hassan M, Walter N, Bermak A (2015) Advanced statistical metrics for gas identification system with quantification feedback. IEEE Sens 15:1705–1715CrossRef Brahim-Belhaouari S, Hassan M, Walter N, Bermak A (2015) Advanced statistical metrics for gas identification system with quantification feedback. IEEE Sens 15:1705–1715CrossRef
Zurück zum Zitat Brahim-Belhouari S, Bermak A, Shi M, Chan PCH (2005) Fast and robust gas identification system using an integrated gas sensor technology and gaussian mixture models. IEEE Sens 5:157CrossRef Brahim-Belhouari S, Bermak A, Shi M, Chan PCH (2005) Fast and robust gas identification system using an integrated gas sensor technology and gaussian mixture models. IEEE Sens 5:157CrossRef
Zurück zum Zitat Burgues J, Marco S (2018) Multivariate estimation of the limit of detection by orthogonal partial least squares in temperaturemodulated mox sensors. Anal Chim Acta 1019:49–64CrossRef Burgues J, Marco S (2018) Multivariate estimation of the limit of detection by orthogonal partial least squares in temperaturemodulated mox sensors. Anal Chim Acta 1019:49–64CrossRef
Zurück zum Zitat Chouaib H (2011) Seelection de caracteeristiques: methodes et applications, PhD thesis. Univ Paris Descartes Chouaib H (2011) Seelection de caracteeristiques: methodes et applications, PhD thesis. Univ Paris Descartes
Zurück zum Zitat Deng Q, Gao S, Lei T, Ling Y, Zhang S, Xie C (2017) Temperature light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens Actuators 247:903–915CrossRef Deng Q, Gao S, Lei T, Ling Y, Zhang S, Xie C (2017) Temperature light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens Actuators 247:903–915CrossRef
Zurück zum Zitat Dennler N, Rastogi S, Fonollos J, van Schaik A, Schmuker M (2022) Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks. Sens Actuators 361:131668CrossRef Dennler N, Rastogi S, Fonollos J, van Schaik A, Schmuker M (2022) Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks. Sens Actuators 361:131668CrossRef
Zurück zum Zitat Djedidi O, Djeziri MA, Morati N, Seguin JL, Bendahan M (2021) Accurate detection and discrimination of pollutant gases using a temperature modulated mox sensor combined with feature extraction and support vector classification. Sens Actuators 339:129817CrossRef Djedidi O, Djeziri MA, Morati N, Seguin JL, Bendahan M (2021) Accurate detection and discrimination of pollutant gases using a temperature modulated mox sensor combined with feature extraction and support vector classification. Sens Actuators 339:129817CrossRef
Zurück zum Zitat Djeziri MA, Benmoussa S, Zio E (2020) Review of health indices extraction and trend modeling methods for remaining useful life estimation. Artificial intelligence techniques for a scalable energy transition: advanced methods, digital technologies, decision support tools, and applications. Book Chapter Springer Nature Switzerland AG, Cham Djeziri MA, Benmoussa S, Zio E (2020) Review of health indices extraction and trend modeling methods for remaining useful life estimation. Artificial intelligence techniques for a scalable energy transition: advanced methods, digital technologies, decision support tools, and applications. Book Chapter Springer Nature Switzerland AG, Cham
Zurück zum Zitat Djeziri MA, Djedidi O, Morati N, Seguin JL, Bendahan M (2022) A temporal-based svm approach for the detection and identification of pollutant gases in a gas mixture. Appl Intell 52:6065–6078CrossRef Djeziri MA, Djedidi O, Morati N, Seguin JL, Bendahan M (2022) A temporal-based svm approach for the detection and identification of pollutant gases in a gas mixture. Appl Intell 52:6065–6078CrossRef
Zurück zum Zitat Espid E, Taghouipur F (2017) UV-led photo-activated chemical gas sensors: a review. Crit Rev Solid State Mater 42:416–432CrossRef Espid E, Taghouipur F (2017) UV-led photo-activated chemical gas sensors: a review. Crit Rev Solid State Mater 42:416–432CrossRef
Zurück zum Zitat Fan H, Bennetts VH, Schaffernicht E, Lilienthal AJ (2018) A cluster analysis approach based on exploiting density peaks for gas discrimination with electronic noses in open environments. Sens Actuators B Chem 259:183–203CrossRef Fan H, Bennetts VH, Schaffernicht E, Lilienthal AJ (2018) A cluster analysis approach based on exploiting density peaks for gas discrimination with electronic noses in open environments. Sens Actuators B Chem 259:183–203CrossRef
Zurück zum Zitat Feng S, Farha F, Li Q, Wan Y, Xu Y, Zhang T, Ning H (2019) Engineering approaches for the improvement of conductometric gas sensor parameters part 1 Improvement of sensor sensitivity and selectivity (short survey). Sensors 19:3760CrossRef Feng S, Farha F, Li Q, Wan Y, Xu Y, Zhang T, Ning H (2019) Engineering approaches for the improvement of conductometric gas sensor parameters part 1 Improvement of sensor sensitivity and selectivity (short survey). Sensors 19:3760CrossRef
Zurück zum Zitat Gardner J, Boilot P, Hines E (2005) Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens Actuators 106:114–121CrossRef Gardner J, Boilot P, Hines E (2005) Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens Actuators 106:114–121CrossRef
Zurück zum Zitat Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Longman Publishing Co Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Longman Publishing Co
Zurück zum Zitat Gosangi R, Gutierrez-Osuna R (2010) Active temperature programming for metal-oxide chemoresistors. IEEE Sens J 10:1075–1082CrossRef Gosangi R, Gutierrez-Osuna R (2010) Active temperature programming for metal-oxide chemoresistors. IEEE Sens J 10:1075–1082CrossRef
Zurück zum Zitat Han L, Yu C, Xiao K, Zhao X (2019) A new method of mixed gas identification based on a convolutional neural network for time series classification. Sensors 19:1960CrossRef Han L, Yu C, Xiao K, Zhao X (2019) A new method of mixed gas identification based on a convolutional neural network for time series classification. Sensors 19:1960CrossRef
Zurück zum Zitat Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinform 2015:1–13CrossRef Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinform 2015:1–13CrossRef
Zurück zum Zitat Iwata T, Saeki M, Okura Y, Yoshikawa T (2022) Gas discrimination based on enhanced gas-species related information obtained by a single gas sensor with novel temperature modulation. Sens Actuators B Chem 354:131225CrossRef Iwata T, Saeki M, Okura Y, Yoshikawa T (2022) Gas discrimination based on enhanced gas-species related information obtained by a single gas sensor with novel temperature modulation. Sens Actuators B Chem 354:131225CrossRef
Zurück zum Zitat Ji H, Zengand W, Li Y (2019) Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11:22664–22684CrossRef Ji H, Zengand W, Li Y (2019) Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11:22664–22684CrossRef
Zurück zum Zitat Jing W, Huchi S, Yi X et al (2021) Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram Int 47:7353–7368CrossRef Jing W, Huchi S, Yi X et al (2021) Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram Int 47:7353–7368CrossRef
Zurück zum Zitat John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem, In Machine learning : proceedings of the eleventh international John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem, In Machine learning : proceedings of the eleventh international
Zurück zum Zitat Jolliffe IT (2022) Principal component analysis, Part of the book series: Springer Series in Statistics ISBN: 978-0-387-22440-4. 1–400 Jolliffe IT (2022) Principal component analysis, Part of the book series: Springer Series in Statistics ISBN: 978-0-387-22440-4. 1–400
Zurück zum Zitat Konstantinos A (2021) Smart gas sensors deep learning for the identification and classification of various gaseous species by sensors. Master Thesis, University of Athena, Oxford Konstantinos A (2021) Smart gas sensors deep learning for the identification and classification of various gaseous species by sensors. Master Thesis, University of Athena, Oxford
Zurück zum Zitat Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice. Mater Sci Eng 139:1–23CrossRef Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice. Mater Sci Eng 139:1–23CrossRef
Zurück zum Zitat Korotcenkov G, Cho B (2013) Engineering approaches for the improvement of conductometric gas sensor parameters part 1. Improvement of sensor sensitivity and selectivity (short survey). Sens Actuators 188:709–728CrossRef Korotcenkov G, Cho B (2013) Engineering approaches for the improvement of conductometric gas sensor parameters part 1. Improvement of sensor sensitivity and selectivity (short survey). Sens Actuators 188:709–728CrossRef
Zurück zum Zitat Krivetskiy V, Andreev MD, Torov AOE, Gaskov AM (2021) Statistical shape analysis pre-processing of temperature modulated metal oxide gas sensor response for machine learning improved selectivity of gases detection in real atmospheric conditions. Sens Actuators 329:129187CrossRef Krivetskiy V, Andreev MD, Torov AOE, Gaskov AM (2021) Statistical shape analysis pre-processing of temperature modulated metal oxide gas sensor response for machine learning improved selectivity of gases detection in real atmospheric conditions. Sens Actuators 329:129187CrossRef
Zurück zum Zitat Laref R (2020) Etude d’un système a base de micro-capteurs de gaz pour le suivi et la cartographie de la pollution atmospherique, PhD thesis. Loraine University, Nancy Laref R (2020) Etude d’un système a base de micro-capteurs de gaz pour le suivi et la cartographie de la pollution atmospherique, PhD thesis. Loraine University, Nancy
Zurück zum Zitat Lee AP, Reedy BJ (1999) Temperature modulation in semiconductor gas sensing. Sens Actuators B Chem 60:35–42CrossRef Lee AP, Reedy BJ (1999) Temperature modulation in semiconductor gas sensing. Sens Actuators B Chem 60:35–42CrossRef
Zurück zum Zitat Liu X, Cheng S, Hu HLS, Hang D, Ning H (2012) A survey on gas sensing technology. Sensors 12(7):9635–9665CrossRef Liu X, Cheng S, Hu HLS, Hang D, Ning H (2012) A survey on gas sensing technology. Sensors 12(7):9635–9665CrossRef
Zurück zum Zitat Liu Q, Hu X, Ye M, Cheng X, Li F (2015) Noise spectroscopy data analysis-based gas identi cation with a single mox sensor. Int J Intell Syst 30:907–922CrossRef Liu Q, Hu X, Ye M, Cheng X, Li F (2015) Noise spectroscopy data analysis-based gas identi cation with a single mox sensor. Int J Intell Syst 30:907–922CrossRef
Zurück zum Zitat Ly HB, Le LM, Phi LV, Phan VH, Tran VQ, Pham BT, Le TT, Derrible S (2019) Development of an ai model to measure trafic air pollution from multisensor and weather data. Sensors 19:4941CrossRef Ly HB, Le LM, Phi LV, Phan VH, Tran VQ, Pham BT, Le TT, Derrible S (2019) Development of an ai model to measure trafic air pollution from multisensor and weather data. Sensors 19:4941CrossRef
Zurück zum Zitat Iwamoto M (1992) Chemical sensor technology, Yamauchi S, ed 4 Iwamoto M (1992) Chemical sensor technology, Yamauchi S, ed 4
Zurück zum Zitat van der Maaten L, Postma E, van den Herik J (2009) Dimensionality reduction: a comparative review, TiCC. Tilburg centre for Creative Computing Tilburg University van der Maaten L, Postma E, van den Herik J (2009) Dimensionality reduction: a comparative review, TiCC. Tilburg centre for Creative Computing Tilburg University
Zurück zum Zitat Magna G, Natale CD, Martinelli E (2019) Self-repairing classification algorithms for chemical sensor array. Sens Actuators 297:126721CrossRef Magna G, Natale CD, Martinelli E (2019) Self-repairing classification algorithms for chemical sensor array. Sens Actuators 297:126721CrossRef
Zurück zum Zitat Mahesh B (2018) Machine learning algorithms:a review. Int J Sci Res 9:381–386 Mahesh B (2018) Machine learning algorithms:a review. Int J Sci Res 9:381–386
Zurück zum Zitat Martinez AM, Kak A (2001) Pca versus lda. IEEE Trans Pattern Anal Mach Intell 23:228–233CrossRef Martinez AM, Kak A (2001) Pca versus lda. IEEE Trans Pattern Anal Mach Intell 23:228–233CrossRef
Zurück zum Zitat Martinez AM, Kak A (2021) Contributions à la sélection des attributs de signaux non stationnaires pour la classification. PhD Thesis Troys University, Troy Martinez AM, Kak A (2021) Contributions à la sélection des attributs de signaux non stationnaires pour la classification. PhD Thesis Troys University, Troy
Zurück zum Zitat McEntegart C, Penrose W, Strathmann S, Stetter J (2000) Detection and discrimination of coliform bacteria with gas sensor arrays. Sens Actuators 70:170–176CrossRef McEntegart C, Penrose W, Strathmann S, Stetter J (2000) Detection and discrimination of coliform bacteria with gas sensor arrays. Sens Actuators 70:170–176CrossRef
Zurück zum Zitat Mondal B, Meetei M, Das J, Chaudhuri CR, Saha H (2015) Quantitative recognition of flammable and toxic gases with artificial neural network using metal oxide gas sensors in embedded platform. Eng Sci Technol Int J 18:229–234 Mondal B, Meetei M, Das J, Chaudhuri CR, Saha H (2015) Quantitative recognition of flammable and toxic gases with artificial neural network using metal oxide gas sensors in embedded platform. Eng Sci Technol Int J 18:229–234
Zurück zum Zitat Morati N, Contaret T, Gomri S, Fiorido T, Seguin JL, Bendahan M (2021) Noise spectroscopy data analysis-based gas identi cation with a single mox sensor. Sens Actuators 334:129654CrossRef Morati N, Contaret T, Gomri S, Fiorido T, Seguin JL, Bendahan M (2021) Noise spectroscopy data analysis-based gas identi cation with a single mox sensor. Sens Actuators 334:129654CrossRef
Zurück zum Zitat Morati N, Contaret T, Seguin JL, Bendahan M, Djeziri M (2020) Data analysis-based gas identification with a single mox sensor operating in dynamic temperature regime. AllSensors Morati N, Contaret T, Seguin JL, Bendahan M, Djeziri M (2020) Data analysis-based gas identification with a single mox sensor operating in dynamic temperature regime. AllSensors
Zurück zum Zitat Mutlag WK, Ali SK, Aydam ZM, Taher BH (2020) Feature extraction methods: a review. J Phys Conf Ser 1591:012028CrossRef Mutlag WK, Ali SK, Aydam ZM, Taher BH (2020) Feature extraction methods: a review. J Phys Conf Ser 1591:012028CrossRef
Zurück zum Zitat Nian R, Liu J, Huang B (2020) A review on reinforcement learning: introduction and applications in industrial process control. Comput Chem Eng 139:106886CrossRef Nian R, Liu J, Huang B (2020) A review on reinforcement learning: introduction and applications in industrial process control. Comput Chem Eng 139:106886CrossRef
Zurück zum Zitat Peng P, Zhao X, Pan X, Ye W (2018) Gas classification using deep convolutional neural networks. Sensors 18:157CrossRef Peng P, Zhao X, Pan X, Ye W (2018) Gas classification using deep convolutional neural networks. Sensors 18:157CrossRef
Zurück zum Zitat Reddy RVK, Babu UR (2018) A review on classification techniques in machine learning. Int J Adv Res Comput Sci Softw Eng 7:1–47 Reddy RVK, Babu UR (2018) A review on classification techniques in machine learning. Int J Adv Res Comput Sci Softw Eng 7:1–47
Zurück zum Zitat Reza M, Derakhshi F, Ghaemi M (2014) Classifying different feature selection algorithms based on the search strategies. In : International conference on machine learning, electrical and mechanical engineering (ICMLEME) Reza M, Derakhshi F, Ghaemi M (2014) Classifying different feature selection algorithms based on the search strategies. In : International conference on machine learning, electrical and mechanical engineering (ICMLEME)
Zurück zum Zitat Saruhan B, Fomekong RL, Nahirniak S (2021) Review: influences of semiconductor metal oxide properties on gas sensing characteristics. Front Sens 657931:1–24 Saruhan B, Fomekong RL, Nahirniak S (2021) Review: influences of semiconductor metal oxide properties on gas sensing characteristics. Front Sens 657931:1–24
Zurück zum Zitat Schleif F, Hammer B, Monroy J, Jimenez J, Blanco-Claraco J, Biehl M (2015) Odor recognition in robotics applications by discriminative time-series modeling. Pattern Anal Appl 19(2015):207–220MathSciNet Schleif F, Hammer B, Monroy J, Jimenez J, Blanco-Claraco J, Biehl M (2015) Odor recognition in robotics applications by discriminative time-series modeling. Pattern Anal Appl 19(2015):207–220MathSciNet
Zurück zum Zitat Schultze TA (2020) Dynamic operation of semiconductor sensors, semiconductor gas sensors. Second ed. ISBN: 978-0-08102559-8. 385–408 Schultze TA (2020) Dynamic operation of semiconductor sensors, semiconductor gas sensors. Second ed. ISBN: 978-0-08102559-8. 385–408
Zurück zum Zitat Seyrek P, Şener B, Özbayoğlu AM, Yang Y (2022) An evaluation study of EMD, EEMD, and VMD for chatter detection in milling. Procedia Comput Sci 200:160–174CrossRef Seyrek P, Şener B, Özbayoğlu AM, Yang Y (2022) An evaluation study of EMD, EEMD, and VMD for chatter detection in milling. Procedia Comput Sci 200:160–174CrossRef
Zurück zum Zitat Shaposhnik A, Ryabtsev S, Zviagin A, Korchagina S, Meshkova N, Shaposhnik D, Vasiliev A (2011) Selective detection of ammonia and its derivatives using mox-sensor and microreactor. Procedia Eng 25:1097–1100CrossRef Shaposhnik A, Ryabtsev S, Zviagin A, Korchagina S, Meshkova N, Shaposhnik D, Vasiliev A (2011) Selective detection of ammonia and its derivatives using mox-sensor and microreactor. Procedia Eng 25:1097–1100CrossRef
Zurück zum Zitat Shaposhnik A, Zviagin A, Sizask E, Ryabtsev S, Vasiliev A, Shaposhnik D (2014) Acetone and ethanol selective detection by a single mox-sensor. Eurosensors 87:1051–1054 Shaposhnik A, Zviagin A, Sizask E, Ryabtsev S, Vasiliev A, Shaposhnik D (2014) Acetone and ethanol selective detection by a single mox-sensor. Eurosensors 87:1051–1054
Zurück zum Zitat Shaposhnik A, Moskalev P, Chegereva K, Zviagin A, Vasiliev A (2021) Selective gas detection of H2 and co by a single mox-sensor. Sens Actuators B Chem 334:129376CrossRef Shaposhnik A, Moskalev P, Chegereva K, Zviagin A, Vasiliev A (2021) Selective gas detection of H2 and co by a single mox-sensor. Sens Actuators B Chem 334:129376CrossRef
Zurück zum Zitat Shooshtari M, Salehi A (2022) An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens Actuators B Chem 357:131418CrossRef Shooshtari M, Salehi A (2022) An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens Actuators B Chem 357:131418CrossRef
Zurück zum Zitat Solórzano A, Rodríguez-Pérez R, Padilla M, Graunke T, Fernandez L, Marco S, Fonollosa J (2018) Multi-unit calibration rejects inherent device variability of chemical sensor arrays. Sens Actuators 265:142–154CrossRef Solórzano A, Rodríguez-Pérez R, Padilla M, Graunke T, Fernandez L, Marco S, Fonollosa J (2018) Multi-unit calibration rejects inherent device variability of chemical sensor arrays. Sens Actuators 265:142–154CrossRef
Zurück zum Zitat Song L, Yang L, Wang Z, Liu D, Luo L, Zhu X, Xi Y, Yang Z, Han N, Wang F, Chen Y (2019) One-step electrospun SNO2/mox heterostructured nanomaterials for highly selective gas sensor array integration. Sens Actuators B Chem 283:793–801CrossRef Song L, Yang L, Wang Z, Liu D, Luo L, Zhu X, Xi Y, Yang Z, Han N, Wang F, Chen Y (2019) One-step electrospun SNO2/mox heterostructured nanomaterials for highly selective gas sensor array integration. Sens Actuators B Chem 283:793–801CrossRef
Zurück zum Zitat Vergara A, Fonollosa J, Mahiques J, Trincavelli M, Rulkov N, Huerta R (2013) On the performance of gas sensor arrays in open sampling systems using inhibitory support vector machines. Sens Actuators 185:462–477CrossRef Vergara A, Fonollosa J, Mahiques J, Trincavelli M, Rulkov N, Huerta R (2013) On the performance of gas sensor arrays in open sampling systems using inhibitory support vector machines. Sens Actuators 185:462–477CrossRef
Zurück zum Zitat Wakhid S, Sarno R, Sabilla SI, Maghfira DB (2019) Detection and classification of indonesian civet and non-civet coffee based on statistical analysis comparison using e-nose. Int J Intell Eng Syst 13:56–65 Wakhid S, Sarno R, Sabilla SI, Maghfira DB (2019) Detection and classification of indonesian civet and non-civet coffee based on statistical analysis comparison using e-nose. Int J Intell Eng Syst 13:56–65
Zurück zum Zitat Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106CrossRef Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106CrossRef
Zurück zum Zitat Wang B, Cancilla JC, Torrecilla HS, Haick H (2014) Artificial sensing intelligence with silicon nanowires for ultra selective detection in the gas phase. Nano Lett 14:933–938CrossRef Wang B, Cancilla JC, Torrecilla HS, Haick H (2014) Artificial sensing intelligence with silicon nanowires for ultra selective detection in the gas phase. Nano Lett 14:933–938CrossRef
Zurück zum Zitat Wang Y, Xing J, Qian S (2017) Selectivity enhancement in electronic nose based on an optimized dqn. Sensors 17:2356CrossRef Wang Y, Xing J, Qian S (2017) Selectivity enhancement in electronic nose based on an optimized dqn. Sensors 17:2356CrossRef
Zurück zum Zitat Wang W-K, Wan M, Zhang W-, Yang Y (2022) Chatter detection methods in the machining processes: a review. J Manuf Processes 77:240–259CrossRef Wang W-K, Wan M, Zhang W-, Yang Y (2022) Chatter detection methods in the machining processes: a review. J Manuf Processes 77:240–259CrossRef
Zurück zum Zitat Wang T, Zhang H, Wu Y, Jiang W, Chen X, Zeng M, Yang J, Su Y, Hu N, Yang Z (2022b) Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning. Sens Actuators 351:130915CrossRef Wang T, Zhang H, Wu Y, Jiang W, Chen X, Zeng M, Yang J, Su Y, Hu N, Yang Z (2022b) Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning. Sens Actuators 351:130915CrossRef
Zurück zum Zitat Wei G, Li G, Zhao J, He A (2019) Development of a lenet-5 gas identification cnn structure for electronic noses. Sensors 19:217CrossRef Wei G, Li G, Zhao J, He A (2019) Development of a lenet-5 gas identification cnn structure for electronic noses. Sensors 19:217CrossRef
Zurück zum Zitat Woo H-S, Na CW, Lee J-H (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: Overview. Sensors 16:1531CrossRef Woo H-S, Na CW, Lee J-H (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: Overview. Sensors 16:1531CrossRef
Zurück zum Zitat Wu Z, Zhang H, Sun W, Lu N, Yan M, Wu Y, Hua Z, Fan S (2020) Development of a low-cost portable electronic nose for cigarette brands identification. Sensors 20:64239 Wu Z, Zhang H, Sun W, Lu N, Yan M, Wu Y, Hua Z, Fan S (2020) Development of a low-cost portable electronic nose for cigarette brands identification. Sensors 20:64239
Zurück zum Zitat Yaqoob U, Younis MI (2019) Chemical gas sensors: recent developments, challenges, and the potential of machine learning-a review. Sensors 19:3760 Yaqoob U, Younis MI (2019) Chemical gas sensors: recent developments, challenges, and the potential of machine learning-a review. Sensors 19:3760
Zurück zum Zitat Zhou Q, Zhang S, Li Y, Xie C, Li H, Ding X (2011) A chinese liquor classification method based on liquid evaporation with one unmodulated metal oxide gas sensor. Sens Actuators 160:483–489CrossRef Zhou Q, Zhang S, Li Y, Xie C, Li H, Ding X (2011) A chinese liquor classification method based on liquid evaporation with one unmodulated metal oxide gas sensor. Sens Actuators 160:483–489CrossRef
Metadaten
Titel
Review on data-driven approaches for improving the selectivity of MOX-sensors
verfasst von
Mohand Djeziri
Samir Benmoussa
Marc Bendahan
Jean-Luc Seguin
Publikationsdatum
13.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2024
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-024-05622-1