Skip to main content

2019 | OriginalPaper | Buchkapitel

Review on Dynamic Stall Control in Airfoils

verfasst von : Abraham Adera, Siva Ramakrishnan

Erschienen in: Advances of Science and Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic stall is a process that occurs when the angle of attack of airfoils exceeds the critical value which leads to fluctuation of aerodynamic loads and loss of performance of streamlined bodies like wind turbines and helicopters as a result of boundary layer separation. This review presents dynamic stall control methods in the oscillating airfoil. Airfoil shape modification and momentum blowing on a boundary layer were the focus of this paper. From the review, it was found that making the leading edge of an airfoil to change its shape dynamically, can help to alleviate dynamic stall in different flow conditions. Similarly, energizing the boundary layer of the flow by momentum blowing both steadily and unsteadily was found to be effective in dynamic stall control while the latter was superior. From the review, it was shown that whatever methods were applied to control dynamic stall, the effectiveness of those methods depend on other parameters too like reduced frequency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Müller-Vahl, H.F., Nayeri, C.N., Paschereit, C.O., Greenblatt, D.: Dynamic stall control via adaptive blowing. Renew. Energy 97, 47–64 (2016)CrossRef Müller-Vahl, H.F., Nayeri, C.N., Paschereit, C.O., Greenblatt, D.: Dynamic stall control via adaptive blowing. Renew. Energy 97, 47–64 (2016)CrossRef
2.
Zurück zum Zitat Almohammadi, K.M., Ingham, D.B., Ma, L., Pourkashanian, M.: Modeling dynamic stall of a straight blade vertical axis wind turbine. J. Fluids Struct. 57, 144–158 (2015)CrossRef Almohammadi, K.M., Ingham, D.B., Ma, L., Pourkashanian, M.: Modeling dynamic stall of a straight blade vertical axis wind turbine. J. Fluids Struct. 57, 144–158 (2015)CrossRef
3.
Zurück zum Zitat Laratro, A., Arjomandi, M., Kelso, R., Cazzolato, B.: A discussion of wind turbine interaction and stall contributions to wind farm noise. J. Wind Eng. 127, 1–10 (2014) Laratro, A., Arjomandi, M., Kelso, R., Cazzolato, B.: A discussion of wind turbine interaction and stall contributions to wind farm noise. J. Wind Eng. 127, 1–10 (2014)
4.
Zurück zum Zitat Buchner, A., Lohry, M.W., Martinelli, L., Soria, J., Smits, A.J.: Dynamic stall in vertical axis wind turbines: comparing experiments and computations. J. Wind Eng. 146, 163–171 (2015) Buchner, A., Lohry, M.W., Martinelli, L., Soria, J., Smits, A.J.: Dynamic stall in vertical axis wind turbines: comparing experiments and computations. J. Wind Eng. 146, 163–171 (2015)
5.
Zurück zum Zitat Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)CrossRef Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)CrossRef
6.
Zurück zum Zitat Niu, J., Lei, J., Lu, T.: Numerical research on the effect of variable droop leading-edge on oscillating NACA 0012 airfoil dynamic stall. Aerosp. Sci. Technol. 72, 476–485 (2018)CrossRef Niu, J., Lei, J., Lu, T.: Numerical research on the effect of variable droop leading-edge on oscillating NACA 0012 airfoil dynamic stall. Aerosp. Sci. Technol. 72, 476–485 (2018)CrossRef
7.
Zurück zum Zitat Li, Q., Maeda, T., Kamada, Y., Hiromori, Y., Nakai, A., Kasuya, T.: Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations. J. Wind Eng. 164, 1–12 (2017) Li, Q., Maeda, T., Kamada, Y., Hiromori, Y., Nakai, A., Kasuya, T.: Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations. J. Wind Eng. 164, 1–12 (2017)
8.
Zurück zum Zitat Geissler, W., van der Wall, B.G.: Dynamic stall control on flapping wing airfoils. Aerosp. Sci. Technol. 62, 1–10 (2017)CrossRef Geissler, W., van der Wall, B.G.: Dynamic stall control on flapping wing airfoils. Aerosp. Sci. Technol. 62, 1–10 (2017)CrossRef
9.
Zurück zum Zitat Yen, J., Ahmed, N.A.: Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J. Wind Eng. Ind. Aerodyn. 114, 12–17 (2013)CrossRef Yen, J., Ahmed, N.A.: Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J. Wind Eng. Ind. Aerodyn. 114, 12–17 (2013)CrossRef
10.
Zurück zum Zitat Choudhry, A., Arjomandi, M., Kelso, R.: Methods to control dynamic stall for wind turbine applications. Renew. Energy 86, 26–37 (2016)CrossRef Choudhry, A., Arjomandi, M., Kelso, R.: Methods to control dynamic stall for wind turbine applications. Renew. Energy 86, 26–37 (2016)CrossRef
11.
Zurück zum Zitat Jones, G., Santer, M., Debiasi, M., Papadakis, G., Debiasi, M., Papadakis, G.: Control of flow separation around an airfoil at low Reynolds numbers using periodic surface morphing. J. Fluids Struct. 76, 536–557 (2018)CrossRef Jones, G., Santer, M., Debiasi, M., Papadakis, G., Debiasi, M., Papadakis, G.: Control of flow separation around an airfoil at low Reynolds numbers using periodic surface morphing. J. Fluids Struct. 76, 536–557 (2018)CrossRef
12.
Zurück zum Zitat Sun, M., Sheikh, S.R.: Dynamic stall suppression on an oscillating airfoil by steady and unsteady tangential blowing. Aerosp. Sci. Technol. 3(6), 355–366 (1999)CrossRef Sun, M., Sheikh, S.R.: Dynamic stall suppression on an oscillating airfoil by steady and unsteady tangential blowing. Aerosp. Sci. Technol. 3(6), 355–366 (1999)CrossRef
13.
Zurück zum Zitat Sicot, C., Devinant, P., Loyer, S., Hureau, J.: Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms. J. Wind Eng. Ind. Aerodyn. 96(8–9), 1320–1331 (2008)CrossRef Sicot, C., Devinant, P., Loyer, S., Hureau, J.: Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms. J. Wind Eng. Ind. Aerodyn. 96(8–9), 1320–1331 (2008)CrossRef
14.
Zurück zum Zitat Hand, B., Kelly, G., Cashman, A.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)MathSciNetCrossRef Hand, B., Kelly, G., Cashman, A.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Kim, Y., Xie, Z.-T.: Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput. Fluids 129, 53–66 (2016)MathSciNetCrossRef Kim, Y., Xie, Z.-T.: Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput. Fluids 129, 53–66 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Greenblatt, D., Wygnanski, I.J.: The control of flow separation by periodic excitation, vol. 36 (2016) Greenblatt, D., Wygnanski, I.J.: The control of flow separation by periodic excitation, vol. 36 (2016)
17.
Zurück zum Zitat Larsen, J.W., Nielsen, S.R.K., Krenk, S.: Dynamic stall model for wind turbine airfoils. J. Fluids Struct. 23(7), 959–982 (2007)CrossRef Larsen, J.W., Nielsen, S.R.K., Krenk, S.: Dynamic stall model for wind turbine airfoils. J. Fluids Struct. 23(7), 959–982 (2007)CrossRef
18.
Zurück zum Zitat Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39(9), 1529–1541 (2010)CrossRef Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39(9), 1529–1541 (2010)CrossRef
19.
Zurück zum Zitat Gharali, K., Johnson, D.A.: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. J. Fluids Struct. 42, 228–244 (2013)CrossRef Gharali, K., Johnson, D.A.: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. J. Fluids Struct. 42, 228–244 (2013)CrossRef
20.
Zurück zum Zitat Chandrasekhara, M.S., Carr, L.W., Wilder, M.C., Paulson, G.N.: Design and development of a dynamically deforming leading edge airfoil for unsteady flow control Chandrasekhara, M.S., Carr, L.W., Wilder, M.C., Paulson, G.N.: Design and development of a dynamically deforming leading edge airfoil for unsteady flow control
21.
Zurück zum Zitat Chandrasekhara, M.S., Wilder, M.C., Carr, L.W.: Compressible dynamic stall control using dynamic shape adaptation. AIAA J. 39(10), 2021–2024 (2001)CrossRef Chandrasekhara, M.S., Wilder, M.C., Carr, L.W.: Compressible dynamic stall control using dynamic shape adaptation. AIAA J. 39(10), 2021–2024 (2001)CrossRef
22.
Zurück zum Zitat Sahin, M., Sankar, L.N., Chandrasekhara, M.S., Tung, C.: Dynamic stall alleviation using a deformable leading edge concept-a numerical study. J. Aircr. 40(1), 77–85 (2003)CrossRef Sahin, M., Sankar, L.N., Chandrasekhara, M.S., Tung, C.: Dynamic stall alleviation using a deformable leading edge concept-a numerical study. J. Aircr. 40(1), 77–85 (2003)CrossRef
23.
Zurück zum Zitat Wang, Q., Zhao, Q.: Rotor airfoil profile optimization for alleviating dynamic stall characteristics. Aerosp. Sci. Technol. 72, 502–515 (2018)CrossRef Wang, Q., Zhao, Q.: Rotor airfoil profile optimization for alleviating dynamic stall characteristics. Aerosp. Sci. Technol. 72, 502–515 (2018)CrossRef
Metadaten
Titel
Review on Dynamic Stall Control in Airfoils
verfasst von
Abraham Adera
Siva Ramakrishnan
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-15357-1_32