Skip to main content

2020 | OriginalPaper | Buchkapitel

Review on Fire Performance of Cellular Lightweight Concrete

verfasst von : I. R. Upasiri, K. M. C. Konthesingha, K. Poologanathan, S. M. A. Nanayakkara, B. Nagaratnam

Erschienen in: ICSBE 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Structural fire damage can be identified as a common accidental disaster throughout the world which cause thousands of deaths, injuries and millions in property damage each year. Fire represents one of the most severe conditions to which structures may be subjected. Generally, structural elements will be exposed to very high temperature (1200 ℃) during a fire propagation. Fire safety of a structure is measured in terms of fire resistance, which is the duration that a structural member can exhibit resistance with respect to structural integrity, stability and heat transmission. Concrete generally provides better fire resisting characteristics compared to the other construction materials due to its low thermal conductivity, high heat capacity and slower strength degradation with temperature. Cellular lightweight concrete (CLC) is one of the novel type of concrete which can be identified as a better construction material than conventional concrete due to its numerous advantages. However, limited research work has been carried out to determine the fire performance of CLC. Fire response of structural members depends on the thermal, mechanical and deformation properties of the structural material at elevated temperatures. Even though properties at elevated temperatures for normal weight concrete is available in literature, properties of CLC at elevated temperatures (ambient to 1200 ℃) is not thoroughly investigated. Further, CLC fire rating under natural/parametric fire situations and under hydrocarbon fire situations needs to be studied. EN 1992.1.2 provides minimum thickness requirements under standard fire situations for non-loadbearing and load bearing normal weight concrete walls, but for CLC, these values are not available, hence required to be included. Also, parameters and material property limitations related to spalling effect of CLC during fire exposure has not being investigated. Moreover, residual characteristics of CLC walls after fire situations and ability to withstand a second fire situation needs to be assessed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ariyanayagam A, Mahendran M (2014) Development of realistic design fire time-temperature curves for the testing of cold-formed steel wall systems. Front Struct Civil Eng 8(4):427–447CrossRef Ariyanayagam A, Mahendran M (2014) Development of realistic design fire time-temperature curves for the testing of cold-formed steel wall systems. Front Struct Civil Eng 8(4):427–447CrossRef
Zurück zum Zitat Brushlinsky N, Ahrens M, Sokolov S, Wagner P (2007) World Fire Statistics. Center of fire Statistics Brushlinsky N, Ahrens M, Sokolov S, Wagner P (2007) World Fire Statistics. Center of fire Statistics
Zurück zum Zitat Kashani A, Ngo T, Mendis P, Black J, Hajimohammadi A (2017) A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete. J Cleaner Prod 149:925–935CrossRef Kashani A, Ngo T, Mendis P, Black J, Hajimohammadi A (2017) A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete. J Cleaner Prod 149:925–935CrossRef
Zurück zum Zitat Kodur V (2014) Properties of concrete at elevated temperatures. ISRN Civ Eng 2014:1–15CrossRef Kodur V (2014) Properties of concrete at elevated temperatures. ISRN Civ Eng 2014:1–15CrossRef
Zurück zum Zitat Laurent C (2014) Investigating the fire resistance of ultra light weight foam concrete. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 37(1):11–18 Laurent C (2014) Investigating the fire resistance of ultra light weight foam concrete. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 37(1):11–18
Zurück zum Zitat Dwaikatand MB, Kodur VKR (2010) Fire induced spalling in high strength concrete beams. Fire Technol 46(1):251–274CrossRef Dwaikatand MB, Kodur VKR (2010) Fire induced spalling in high strength concrete beams. Fire Technol 46(1):251–274CrossRef
Zurück zum Zitat Mydin M, Wang Y (2011) Mechanical properties of foamed concrete exposed to high temperatures. Constr Build Mater 26(1):638–654CrossRef Mydin M, Wang Y (2011) Mechanical properties of foamed concrete exposed to high temperatures. Constr Build Mater 26(1):638–654CrossRef
Zurück zum Zitat Othuman M, Wang Y (2011) Elevated-temperature thermal properties of lightweight foamed concrete. Constr Build Mater 25(2):705–716CrossRef Othuman M, Wang Y (2011) Elevated-temperature thermal properties of lightweight foamed concrete. Constr Build Mater 25(2):705–716CrossRef
Zurück zum Zitat Ramamurthy K, Kunhanandan Nambiar E, Indu Siva Ranjani G (2009) A classification of studies on properties of foam concrete. Cem Concr Compos 31(6):388–396CrossRef Ramamurthy K, Kunhanandan Nambiar E, Indu Siva Ranjani G (2009) A classification of studies on properties of foam concrete. Cem Concr Compos 31(6):388–396CrossRef
Zurück zum Zitat RILEMTC129-MHT (2000) Test methods for mechanical properties of concrete at high temperatures, Part 4—tensile strength for service and accident conditions. Mater Struct 33:219–223 RILEMTC129-MHT (2000) Test methods for mechanical properties of concrete at high temperatures, Part 4—tensile strength for service and accident conditions. Mater Struct 33:219–223
Zurück zum Zitat Sayadi A, Tapia J, Neitzert T, Clifton G (2016) Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr Build Mater 112:716–724CrossRef Sayadi A, Tapia J, Neitzert T, Clifton G (2016) Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr Build Mater 112:716–724CrossRef
Zurück zum Zitat She W, Zhao G, Cai D, Jiang J, Cao X (2018) Numerical study on the effect of pore shapes on the thermal behaviors of cellular concrete. Constr Build Mater 163:113–121CrossRef She W, Zhao G, Cai D, Jiang J, Cao X (2018) Numerical study on the effect of pore shapes on the thermal behaviors of cellular concrete. Constr Build Mater 163:113–121CrossRef
Zurück zum Zitat Singh N (2016) Effective uses of light weight concrete. J Civil Eng Environ Technol 3(3):208–211 Singh N (2016) Effective uses of light weight concrete. J Civil Eng Environ Technol 3(3):208–211
Zurück zum Zitat Standard test methods for fire tests of building construction and materials (2008) ASTM E119-08b, ASTM International, West Conshohocken, PA, USA Standard test methods for fire tests of building construction and materials (2008) ASTM E119-08b, ASTM International, West Conshohocken, PA, USA
Zurück zum Zitat The European Union (2004) Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design The European Union (2004) Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design
Zurück zum Zitat Kodur VR, Raut N (2010) Performance of concrete structures under fire hazard: emerging trends. Indian Concr J 84(2):23–31 Kodur VR, Raut N (2010) Performance of concrete structures under fire hazard: emerging trends. Indian Concr J 84(2):23–31
Zurück zum Zitat Vinith Kumar N, Arunkumar C, Srinivasa Senthil S (2018) Experimental study on mechanical and thermal behavior of foamed concrete. Mater Today: Proc 5(2):8753–8760 Vinith Kumar N, Arunkumar C, Srinivasa Senthil S (2018) Experimental study on mechanical and thermal behavior of foamed concrete. Mater Today: Proc 5(2):8753–8760
Metadaten
Titel
Review on Fire Performance of Cellular Lightweight Concrete
verfasst von
I. R. Upasiri
K. M. C. Konthesingha
K. Poologanathan
S. M. A. Nanayakkara
B. Nagaratnam
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9749-3_41