Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 4/2021

17.06.2021 | Critical Review

Review on polishing technology of small-scale aspheric optics

verfasst von: Yunfeng Peng, Bingyi Shen, Zhenzhong Wang, Ping Yang, Wei Yang, Guo Bi

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Small-scale aspheric optical elements have an urgent market demand and a wide range of applications. With the development of science and technology and the increasing requirements on product quality, the polishing technology of small size aspheric optical elements is becoming much more important in the field of ultra-precision machining. This paper first gave a brief introduction of the commonly used material for small size aspherical optical lenses and molds. Then, the applicable polishing technologies and their development status were introduced in detail, which included the computer controlled optical surface (CCOS), abrasive jet polishing (AJP), magnetorheological finishing (MF), ion beam polishing (IBP), bonnet polishing (BP), chemical mechanical polishing (CMP), shear-thickening polishing (STP), laser polishing (LP), and several kinds of compound polishing technologies. Finally, the development of polishing technology for small size aspheric optical components was summarized and prospected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pang CT, Luo SB (2010) Advanced aspheric surface machining technology. Aviation Precision Manufacturing Technology 37:1–5 Pang CT, Luo SB (2010) Advanced aspheric surface machining technology. Aviation Precision Manufacturing Technology 37:1–5
2.
Zurück zum Zitat Hinn M, Alex P (2013) Efficient grinding and polishing processes for asphere manufacturing. In Proc. The International Society for Optical Engineering. 8840I 1-7 (SPIE: Rochester, NY, USA, 2013). Hinn M, Alex P (2013) Efficient grinding and polishing processes for asphere manufacturing. In Proc. The International Society for Optical Engineering. 8840I 1-7 (SPIE: Rochester, NY, USA, 2013).
3.
Zurück zum Zitat Yin SH, Zhu KJ, Yu JW, Zhu YJ, Chen FJ (2012) Micro aspheric glass lens molding process. Journal of Mechanical Engineering 48:182–192CrossRef Yin SH, Zhu KJ, Yu JW, Zhu YJ, Chen FJ (2012) Micro aspheric glass lens molding process. Journal of Mechanical Engineering 48:182–192CrossRef
4.
Zurück zum Zitat Lan XR, 2019) Studies on precision injection molding technology of imaging optical plastic lens. (Changchun University of Science and Technology, Changchun, China. Lan XR, 2019) Studies on precision injection molding technology of imaging optical plastic lens. (Changchun University of Science and Technology, Changchun, China.
5.
Zurück zum Zitat Gong F, Li KS, Yan C (2018) Progress on precision glass molding. Opt Precis Eng 26:1380–1391CrossRef Gong F, Li KS, Yan C (2018) Progress on precision glass molding. Opt Precis Eng 26:1380–1391CrossRef
6.
Zurück zum Zitat Li C, Li XL, Huang SQ, Li LQ, Zhang FH (2021) Ultra-precision grinding of Gd3Ga5O12 crystals with graphene oxide coolant: material deformation mechanism and performance evaluation. J Manuf Process 61:417–427CrossRef Li C, Li XL, Huang SQ, Li LQ, Zhang FH (2021) Ultra-precision grinding of Gd3Ga5O12 crystals with graphene oxide coolant: material deformation mechanism and performance evaluation. J Manuf Process 61:417–427CrossRef
7.
Zurück zum Zitat Wu YG, (2019) Research on precision molding technology of optical lens. (Changchun University of Science and Technology, Changchun, China). Wu YG, (2019) Research on precision molding technology of optical lens. (Changchun University of Science and Technology, Changchun, China).
8.
Zurück zum Zitat Rupp V (1965) The development of optical surfaces during the grinding process. Appl Opt 6:743–748CrossRef Rupp V (1965) The development of optical surfaces during the grinding process. Appl Opt 6:743–748CrossRef
9.
Zurück zum Zitat Aspden R, McDonough R, Nitchie F Jr (1972) Computer assisted optical surfacing. Appl Opt 11:2739–2747CrossRef Aspden R, McDonough R, Nitchie F Jr (1972) Computer assisted optical surfacing. Appl Opt 11:2739–2747CrossRef
10.
Zurück zum Zitat Edwards D, Hed P (1987) Optical glass fabrication technology 1: fine grinding mechanism using bound diamond abrasives. Appl Opt 26:4670–4676CrossRef Edwards D, Hed P (1987) Optical glass fabrication technology 1: fine grinding mechanism using bound diamond abrasives. Appl Opt 26:4670–4676CrossRef
11.
Zurück zum Zitat Hed P, Edwards D (1987) Optical glass fabrication technology 2: relationship between subsurface damage depth and surface roughness during grinding of optical glass with diamond tool. Appl Opt 26:4677–4680CrossRef Hed P, Edwards D (1987) Optical glass fabrication technology 2: relationship between subsurface damage depth and surface roughness during grinding of optical glass with diamond tool. Appl Opt 26:4677–4680CrossRef
12.
Zurück zum Zitat Gilini D, Czajkowski W (1992) Microgrinding makes ultrasmooth optics fast. Laser Focus World 7:146–150 Gilini D, Czajkowski W (1992) Microgrinding makes ultrasmooth optics fast. Laser Focus World 7:146–150
13.
Zurück zum Zitat Geyl R, (1992) High-power optics at REOSC. In Proc. the International Society for Optical Engineering. 410-417 (SPIE: San Diego, CA, USA). Geyl R, (1992) High-power optics at REOSC. In Proc. the International Society for Optical Engineering. 410-417 (SPIE: San Diego, CA, USA).
14.
Zurück zum Zitat Aronno R, Bajuk D, Clucas L (1995) Aspheres research for the stars and grow in down-to-earth application. Photonics Spectra 29:100 Aronno R, Bajuk D, Clucas L (1995) Aspheres research for the stars and grow in down-to-earth application. Photonics Spectra 29:100
15.
Zurück zum Zitat Jones R (1976) Optimization of computer controlled polishing. Appl Opt 16:218–224CrossRef Jones R (1976) Optimization of computer controlled polishing. Appl Opt 16:218–224CrossRef
16.
Zurück zum Zitat Tang W (2016) Research on removal model and technology for ion beam figuring large aspherical mirror. University of Chinese Academy of Sciences, Beijing, China Tang W (2016) Research on removal model and technology for ion beam figuring large aspherical mirror. University of Chinese Academy of Sciences, Beijing, China
17.
Zurück zum Zitat Xue DL, Zhang ZY, Zhang XJ (2005) Computer controlled polishing technology for middle or small aspheric lens. Opt Precis Eng 13:198–204 Xue DL, Zhang ZY, Zhang XJ (2005) Computer controlled polishing technology for middle or small aspheric lens. Opt Precis Eng 13:198–204
18.
Zurück zum Zitat Liu DM, Zheng S, Fu XH, Jia ZH (2013) Research on processing technology of high precision minor-caliber aspheric surface. Journal of Changchun University of Science and Technology (Nature Science Edition) 36:24–27 Liu DM, Zheng S, Fu XH, Jia ZH (2013) Research on processing technology of high precision minor-caliber aspheric surface. Journal of Changchun University of Science and Technology (Nature Science Edition) 36:24–27
19.
Zurück zum Zitat Li Q (2014) Study on stability improvement and path optimization in numerical control small tool polishing for optical component. National University of Defense Technology, Changsha, China Li Q (2014) Study on stability improvement and path optimization in numerical control small tool polishing for optical component. National University of Defense Technology, Changsha, China
20.
Zurück zum Zitat Dong ZC, Cheng HB (2015) Toward the complete practicability for the linear-equation dwell time model in sub-aperture polishing. Appl Opt 54:8884–8890CrossRef Dong ZC, Cheng HB (2015) Toward the complete practicability for the linear-equation dwell time model in sub-aperture polishing. Appl Opt 54:8884–8890CrossRef
21.
Zurück zum Zitat Qu XT, Wang HY, Fan C, Wu WZ, Liu XL (2015) Uniform-overlap-rate path for aspheric polishing. J Xi'an Jiaotong Univ 49:126–131 Qu XT, Wang HY, Fan C, Wu WZ, Liu XL (2015) Uniform-overlap-rate path for aspheric polishing. J Xi'an Jiaotong Univ 49:126–131
22.
Zurück zum Zitat Bi CL, (2019) Trajectory planning of optics surface polishing based on small tool head. (Jilin University, Jilin, China). Bi CL, (2019) Trajectory planning of optics surface polishing based on small tool head. (Jilin University, Jilin, China).
23.
Zurück zum Zitat Tam HY, Cheng HB, Dong ZC (2013) Peano-like paths for subaperture polishing of optical aspherical surfaces. Appl Opt 52:3624–3636CrossRef Tam HY, Cheng HB, Dong ZC (2013) Peano-like paths for subaperture polishing of optical aspherical surfaces. Appl Opt 52:3624–3636CrossRef
24.
Zurück zum Zitat Fähnle O, Brug H, Frankena H (1998) Fluid jet polishing of optical surfaces. Appl Opt 37:6771–6773CrossRef Fähnle O, Brug H, Frankena H (1998) Fluid jet polishing of optical surfaces. Appl Opt 37:6771–6773CrossRef
25.
Zurück zum Zitat Li ZZ, (2011) Study on abrasive jet polishing technology. (National University of Defense Technology, Changsha, China). Li ZZ, (2011) Study on abrasive jet polishing technology. (National University of Defense Technology, Changsha, China).
26.
Zurück zum Zitat Hashish M (1984) A modeling study of metal cutting with abrasive waterjets. J Eng Mater Technol 106:88–100CrossRef Hashish M (1984) A modeling study of metal cutting with abrasive waterjets. J Eng Mater Technol 106:88–100CrossRef
27.
Zurück zum Zitat Evans G, Gulden M, Rosenblatt M (1978) Impact damage in brittle materials in the elastic-plastic response regime. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 361:343–365 Evans G, Gulden M, Rosenblatt M (1978) Impact damage in brittle materials in the elastic-plastic response regime. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 361:343–365
28.
Zurück zum Zitat Tsegaw A, Shiou FJ, Lin SP (2015) Ultra-precision polishing of N-Bk7 using an innovative self-propelled abrasive fluid multi-jet polishing tool. Mach Sci Technol 19:262–285CrossRef Tsegaw A, Shiou FJ, Lin SP (2015) Ultra-precision polishing of N-Bk7 using an innovative self-propelled abrasive fluid multi-jet polishing tool. Mach Sci Technol 19:262–285CrossRef
29.
Zurück zum Zitat Wang ZY, (2019) Study on shape optimization and application of abrasive fluid jet polishing removal function. (China Academy of Engineering Physics, Beijing, China). Wang ZY, (2019) Study on shape optimization and application of abrasive fluid jet polishing removal function. (China Academy of Engineering Physics, Beijing, China).
30.
Zurück zum Zitat Zhang F, Zhang XJ, Yu JC, Wang QD, Guo PJ (2000) Foundation of mathematics model of magnetorheological finishing. Optical Technique 26:190–192 Zhang F, Zhang XJ, Yu JC, Wang QD, Guo PJ (2000) Foundation of mathematics model of magnetorheological finishing. Optical Technique 26:190–192
31.
Zurück zum Zitat Xie C, Li SY, Peng XQ, Song C (2009) Research on polishing precision of machine tool impacting on polishing process. Aviation Precision Manufacturing Technology 45:9–12 Xie C, Li SY, Peng XQ, Song C (2009) Research on polishing precision of machine tool impacting on polishing process. Aviation Precision Manufacturing Technology 45:9–12
32.
Zurück zum Zitat Hu H, Dai YF, Peng XQ (2006) Design and research of the inverted device for magnetorheological finishing. Aviation Precision Manufacturing Technology 42:5–8 Hu H, Dai YF, Peng XQ (2006) Design and research of the inverted device for magnetorheological finishing. Aviation Precision Manufacturing Technology 42:5–8
33.
Zurück zum Zitat Dai YF, You WW, Peng XQ (2005) Research on a magnetorheological fluid rheological property testing system. Aviation Precision Manufacturing Technology 41:17–19, 62 Dai YF, You WW, Peng XQ (2005) Research on a magnetorheological fluid rheological property testing system. Aviation Precision Manufacturing Technology 41:17–19, 62
34.
Zurück zum Zitat You WW, Peng XQ, Dai YF (2004) MR fluids for finishing use. Opt Precis Eng 12:330–334 You WW, Peng XQ, Dai YF (2004) MR fluids for finishing use. Opt Precis Eng 12:330–334
35.
Zurück zum Zitat Song C, Dai YF, Peng XQ, Shi F (2010) Post processing for magnetorheological finishing of optical mirrors. Opt Precis Eng 18:1715–1721 Song C, Dai YF, Peng XQ, Shi F (2010) Post processing for magnetorheological finishing of optical mirrors. Opt Precis Eng 18:1715–1721
36.
Zurück zum Zitat Dai YF, Shi F, Peng XQ, Song C (2010) Deterministic figuring in optical machining by magnetorheological finishing. Acta Opt Sin 30:198–205CrossRef Dai YF, Shi F, Peng XQ, Song C (2010) Deterministic figuring in optical machining by magnetorheological finishing. Acta Opt Sin 30:198–205CrossRef
37.
Zurück zum Zitat Peng XQ, Dai YF, Li SY, You WW (2004) Dwell time algorithm for MRF of axis-symmetrical aspherical parts. Journal of National University of Defense Technology 26:89–92 Peng XQ, Dai YF, Li SY, You WW (2004) Dwell time algorithm for MRF of axis-symmetrical aspherical parts. Journal of National University of Defense Technology 26:89–92
38.
Zurück zum Zitat Shi F, Dai YF, Dai YF, Song C (2009) Three-dimensional material removal model of magnetorheological finishing (MRF). China Mechanical Engineering 20:644–648 Shi F, Dai YF, Dai YF, Song C (2009) Three-dimensional material removal model of magnetorheological finishing (MRF). China Mechanical Engineering 20:644–648
39.
Zurück zum Zitat Sun XW, Zhang FH, Dong S, Kang GW (2006) Research on remove model and algorithm of resident time for magnetorheological finishing. New Technology & New Process 2:73–75 Sun XW, Zhang FH, Dong S, Kang GW (2006) Research on remove model and algorithm of resident time for magnetorheological finishing. New Technology & New Process 2:73–75
40.
Zurück zum Zitat Yang ZQ, Gup ZD, Zhang MS, Liu WG, Hang LX (2007) Study on influence of magnetic field intensity on surface roughness in magnetorheological finishing. Journal of Xi’an Technological University 27:511–514 Yang ZQ, Gup ZD, Zhang MS, Liu WG, Hang LX (2007) Study on influence of magnetic field intensity on surface roughness in magnetorheological finishing. Journal of Xi’an Technological University 27:511–514
41.
Zurück zum Zitat Yin SH, Xu ZQ, Chen FJ, Yu JW (2013) Inclined axis magnetorheological finishing technology for small aspherical surface. Journal of Mechanical Engineering 49:33–38CrossRef Yin SH, Xu ZQ, Chen FJ, Yu JW (2013) Inclined axis magnetorheological finishing technology for small aspherical surface. Journal of Mechanical Engineering 49:33–38CrossRef
42.
Zurück zum Zitat Yin SH, Gong S, He BW, Chen FJ, Yin ZQ, Cao CG (2018) Development on synergistic process and machine tools integrated inclined axis grinding and magnetorheological polishing for small aspheric surface. Journal of Mechanical Engineering 54:205–211CrossRef Yin SH, Gong S, He BW, Chen FJ, Yin ZQ, Cao CG (2018) Development on synergistic process and machine tools integrated inclined axis grinding and magnetorheological polishing for small aspheric surface. Journal of Mechanical Engineering 54:205–211CrossRef
43.
Zurück zum Zitat Yin SH, Chen FJ, Gong S, Yu JW, Yin ZQ, Guan CL, Cao CG, Cao XH (2016) Research and application of ultra-precision CNC composite machine tools for small aperture aspheric glass lens model. World Manufacturing Engineering & Market 4:24–29 Yin SH, Chen FJ, Gong S, Yu JW, Yin ZQ, Guan CL, Cao CG, Cao XH (2016) Research and application of ultra-precision CNC composite machine tools for small aperture aspheric glass lens model. World Manufacturing Engineering & Market 4:24–29
44.
Zurück zum Zitat Liu SW, Wang HX, Zhang QH, Hou J, Zhong B, Chen XH (2020) Regionalized modeling approach of tool influence function in magnetorheological finishing process for aspherical optics. Optik. 206:164368CrossRef Liu SW, Wang HX, Zhang QH, Hou J, Zhong B, Chen XH (2020) Regionalized modeling approach of tool influence function in magnetorheological finishing process for aspherical optics. Optik. 206:164368CrossRef
45.
Zurück zum Zitat Liu JB, Li XY, Zhang YF, Tian D, Ye MH, Wang C (2020) Predicting the material removal rate (MRR) in surface magnetorheological finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl Surf Sci 504:144492CrossRef Liu JB, Li XY, Zhang YF, Tian D, Ye MH, Wang C (2020) Predicting the material removal rate (MRR) in surface magnetorheological finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl Surf Sci 504:144492CrossRef
46.
Zurück zum Zitat Yang H, Zhao G, Liu XY, Ye ZH, Jia Y, He JG, Huang W (2020) Curvature effect of magnetorheological finishing. Laser & Optoelectronics Progress 57:172202 Yang H, Zhao G, Liu XY, Ye ZH, Jia Y, He JG, Huang W (2020) Curvature effect of magnetorheological finishing. Laser & Optoelectronics Progress 57:172202
47.
Zurück zum Zitat Allen L, Keim K, Lewis T, Ullom J (1991) Surface error correction of a Keck 10m telescope primary mirror segment by ion figuring. Advanced Optical Manufacturing and Testing II 1531:195–204CrossRef Allen L, Keim K, Lewis T, Ullom J (1991) Surface error correction of a Keck 10m telescope primary mirror segment by ion figuring. Advanced Optical Manufacturing and Testing II 1531:195–204CrossRef
48.
Zurück zum Zitat Wang YG, Dai C, Li WQ, Meng XH, Dong HW, Wang P, (2016) Polishing an off-axis aspheric mirror by ion beam figuring. In AOMATT: Advanced Optical Manufacturing Technologies. 9683 (SPIE: Suzhou, China, 2016). Wang YG, Dai C, Li WQ, Meng XH, Dong HW, Wang P, (2016) Polishing an off-axis aspheric mirror by ion beam figuring. In AOMATT: Advanced Optical Manufacturing Technologies. 9683 (SPIE: Suzhou, China, 2016).
49.
Zurück zum Zitat Dai YF, Liao WL, Chen SY, Zhou L, Xie XH (2010) Theoretical analysis and experimental study of material removal characteristics in ion beam figuring process. In AOMATT: Advanced Optical Manufacturing Technologies. 7655 (SPIE: Dalian, China, 2010). Dai YF, Liao WL, Chen SY, Zhou L, Xie XH (2010) Theoretical analysis and experimental study of material removal characteristics in ion beam figuring process. In AOMATT: Advanced Optical Manufacturing Technologies. 7655 (SPIE: Dalian, China, 2010).
50.
Zurück zum Zitat Shu Y, Zhou L, Xie XH, Liao WL, Li SY (2012) Impact of oblique incidence in ion beam figuring on surface roughness. Nanotechnology and Precision Engineering 10:365–368 Shu Y, Zhou L, Xie XH, Liao WL, Li SY (2012) Impact of oblique incidence in ion beam figuring on surface roughness. Nanotechnology and Precision Engineering 10:365–368
51.
Zurück zum Zitat Liao WL, Dai YF, Zhou L, Wang JM, Yuan Z, Xie XH (2011) Ion beam figuring for rectangular off-axis aspheric mirrors. Journal of National University of Defense Technology 33:100–104 Liao WL, Dai YF, Zhou L, Wang JM, Yuan Z, Xie XH (2011) Ion beam figuring for rectangular off-axis aspheric mirrors. Journal of National University of Defense Technology 33:100–104
52.
Zurück zum Zitat Lunin S, Sinel’nikov B, Sysoev I (2018) Features of ion-beam polishing of the surface of sapphire. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 12:898–901CrossRef Lunin S, Sinel’nikov B, Sysoev I (2018) Features of ion-beam polishing of the surface of sapphire. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 12:898–901CrossRef
53.
Zurück zum Zitat Li XJ, Wang DS, Wang G, Zhang X, Zhang N, Pei N, Nie FM, Qi ZC (2020) Edge effect suppression of ion beam figuring process on optical component surface. Surface Technology 49:349–355 Li XJ, Wang DS, Wang G, Zhang X, Zhang N, Pei N, Nie FM, Qi ZC (2020) Edge effect suppression of ion beam figuring process on optical component surface. Surface Technology 49:349–355
54.
Zurück zum Zitat Bingham R, Walker D, Kim D-H, Brooks D, Freeman R, Riley D, (2000). Novel automated process for aspheric surfaces. In Proc. 2010 SPIE Current Developments in Lens Design and Optical Systems Engineering. 445-450 (SPIE: San Diego, CA, USA). Bingham R, Walker D, Kim D-H, Brooks D, Freeman R, Riley D, (2000). Novel automated process for aspheric surfaces. In Proc. 2010 SPIE Current Developments in Lens Design and Optical Systems Engineering. 445-450 (SPIE: San Diego, CA, USA).
55.
Zurück zum Zitat Wang C (2019) Theoretical study on quantification of bonnet polishing residue height adapted to free surface curvature. Yanshan University, Qinhuangdao, China Wang C (2019) Theoretical study on quantification of bonnet polishing residue height adapted to free surface curvature. Yanshan University, Qinhuangdao, China
56.
Zurück zum Zitat Walker D, Beaucamp A, Bingham R, Brooks D, Freeman R, Kim S, King A, McCavana G, Morton R, Riley D, Simms J, (2002) Precessions process for efficient production of aspheric optics for large telescopes and their instrumentation. In Proc. 2003 SPIE Specialized Optical Developments in Astronomy. 73-84 (SPIE: Waikoloa, Hawaii, USA). Walker D, Beaucamp A, Bingham R, Brooks D, Freeman R, Kim S, King A, McCavana G, Morton R, Riley D, Simms J, (2002) Precessions process for efficient production of aspheric optics for large telescopes and their instrumentation. In Proc. 2003 SPIE Specialized Optical Developments in Astronomy. 73-84 (SPIE: Waikoloa, Hawaii, USA).
57.
Zurück zum Zitat Walker D, Beaucamp A, Dunn C, Freeman R, Morton R, Wei S, Yu G (2008) Active control of edges and global microstructure on segmented mirrors. In Proc. Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. 701812-701819 (SPIE: Marseille, France, 2008). Walker D, Beaucamp A, Dunn C, Freeman R, Morton R, Wei S, Yu G (2008) Active control of edges and global microstructure on segmented mirrors. In Proc. Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. 701812-701819 (SPIE: Marseille, France, 2008).
58.
Zurück zum Zitat Walker D, Beaucamp A, Brooks D, Doubrovski V, Cassie M, Dunn C, Freeman R, King A, Libert M, McCavana G, Morton R, Riley D, Simms J (2004) New results from the Precessions polishing process scaled to larger sizes. In Proc. SPIE Optical Fabrication, Metrology, and Material Advancements for Telescopes. 71-80 (SPIE: Glasgow, UK, 2004). Walker D, Beaucamp A, Brooks D, Doubrovski V, Cassie M, Dunn C, Freeman R, King A, Libert M, McCavana G, Morton R, Riley D, Simms J (2004) New results from the Precessions polishing process scaled to larger sizes. In Proc. SPIE Optical Fabrication, Metrology, and Material Advancements for Telescopes. 71-80 (SPIE: Glasgow, UK, 2004).
59.
Zurück zum Zitat Gao B, Yao YX, Xie DG, Yuan ZJ (2006) Motion modeling and simulation of bonnet polishing precession mechanism. Chinese Journal of Mechanical Engineering 42:101–104CrossRef Gao B, Yao YX, Xie DG, Yuan ZJ (2006) Motion modeling and simulation of bonnet polishing precession mechanism. Chinese Journal of Mechanical Engineering 42:101–104CrossRef
60.
Zurück zum Zitat Song JF, Yao YX, Xie DG, Gao B (2007) Experimental research on polishing spot of bonnet polishing. Appl Mech Mater 10-12:385–389CrossRef Song JF, Yao YX, Xie DG, Gao B (2007) Experimental research on polishing spot of bonnet polishing. Appl Mech Mater 10-12:385–389CrossRef
61.
Zurück zum Zitat Yu S (2007) Z, Yao Y X, Gao B. Xie D G Development of CNC system for polishing machine with bonnet tool Study on Machine Tools Design 2:17–20 Yu S (2007) Z, Yao Y X, Gao B. Xie D G Development of CNC system for polishing machine with bonnet tool Study on Machine Tools Design 2:17–20
62.
Zurück zum Zitat Wang YF, Yao YX, Yu SZ (2006) The algorithm for bonnet tool polishing of rotary symmetrical aspheric surface. Modern Manufacturing Engineering 8:9–11, 14 Wang YF, Yao YX, Yu SZ (2006) The algorithm for bonnet tool polishing of rotary symmetrical aspheric surface. Modern Manufacturing Engineering 8:9–11, 14
63.
Zurück zum Zitat Li HY, Zhang W, Yu GY (2009) Removing characteristics of ultra-precision bonnet polishing on spatial optics elements. Acta Opt Sin 29:811–817CrossRef Li HY, Zhang W, Yu GY (2009) Removing characteristics of ultra-precision bonnet polishing on spatial optics elements. Acta Opt Sin 29:811–817CrossRef
64.
Zurück zum Zitat Zhang L, Li YB, Jin MS, Piao ZY, Ji SM (2014) Abrasive field analysis of mould free surface polishing for a new gasbag polishing method. China Mechanical Engineering 25:832–835 Zhang L, Li YB, Jin MS, Piao ZY, Ji SM (2014) Abrasive field analysis of mould free surface polishing for a new gasbag polishing method. China Mechanical Engineering 25:832–835
65.
Zurück zum Zitat Chen GD, Ji SM, Jin MS, Zhang C (2012) Layering shaping mould gasbag polishing trajectory planning method for equal residual figure error. Acta Armamentar II 33:724–729 Chen GD, Ji SM, Jin MS, Zhang C (2012) Layering shaping mould gasbag polishing trajectory planning method for equal residual figure error. Acta Armamentar II 33:724–729
66.
Zurück zum Zitat Ji SM, Jin MS, Zhang X, Zhang L, Zhang YD, Yuan JL (2007) Novel gasbag polishing technique for free-form mold. Chinese J Mech Eng 43:2–6 Ji SM, Jin MS, Zhang X, Zhang L, Zhang YD, Yuan JL (2007) Novel gasbag polishing technique for free-form mold. Chinese J Mech Eng 43:2–6
67.
Zurück zum Zitat Wang CJ, Wang ZZ, Wang QJ, Ke XL, Zhong B, Guo YB, Xu Q (2017) Improved semirigid bonnet tool for high-efficiency polishing on large aspheric optics. Int J Adv Manuf Technol 88:1607–1617CrossRef Wang CJ, Wang ZZ, Wang QJ, Ke XL, Zhong B, Guo YB, Xu Q (2017) Improved semirigid bonnet tool for high-efficiency polishing on large aspheric optics. Int J Adv Manuf Technol 88:1607–1617CrossRef
68.
Zurück zum Zitat Wang CJ, Wang ZZ, Yang X, Sun ZJ, Peng YF, Guo YB, Xu Q (2014) Modeling of the static tool influence function of bonnet polishing based on FEA. Int J Adv Manuf Technol 74:341–349CrossRef Wang CJ, Wang ZZ, Yang X, Sun ZJ, Peng YF, Guo YB, Xu Q (2014) Modeling of the static tool influence function of bonnet polishing based on FEA. Int J Adv Manuf Technol 74:341–349CrossRef
69.
Zurück zum Zitat Wang CJ, Wang ZZ, Pan R, Xie YH, Guo YB (2014) Research on the residual error evaluation method for deterministic polishing of aspheric optics. Journal of Mechanical Engineering 50:169–175CrossRef Wang CJ, Wang ZZ, Pan R, Xie YH, Guo YB (2014) Research on the residual error evaluation method for deterministic polishing of aspheric optics. Journal of Mechanical Engineering 50:169–175CrossRef
70.
Zurück zum Zitat Wang CJ, Guo YB, Wang ZZ, Pan R, Xie YH (2013) Dynamic removal function modeling of bonnet tool polishing on optics elements. Journal of Mechanical Engineering 49:19–25CrossRef Wang CJ, Guo YB, Wang ZZ, Pan R, Xie YH (2013) Dynamic removal function modeling of bonnet tool polishing on optics elements. Journal of Mechanical Engineering 49:19–25CrossRef
71.
Zurück zum Zitat Pan R, Wang ZZ, Wang CJ, Zhang DX, Xie YH, Guo YB (2013) Control techniques of bonnet polishing for free-form optical lenses with precession. Journal of Mechanical Engineering 49:186–193CrossRef Pan R, Wang ZZ, Wang CJ, Zhang DX, Xie YH, Guo YB (2013) Control techniques of bonnet polishing for free-form optical lenses with precession. Journal of Mechanical Engineering 49:186–193CrossRef
72.
Zurück zum Zitat Pan R, Wang ZZ, Guo YB, Wang CJ, Zhang DX (2012) Movement modeling and control of precession mechanism for bonnet tool polishing large axisymmetrical aspheric lenses. J Mech Eng 48:183–190 Pan R, Wang ZZ, Guo YB, Wang CJ, Zhang DX (2012) Movement modeling and control of precession mechanism for bonnet tool polishing large axisymmetrical aspheric lenses. J Mech Eng 48:183–190
73.
Zurück zum Zitat Wang F, Zhang J, Peng LR, Wang GW, Sui YX (2015) Motion-precision control in bonnet-polishing. Opt Precis Eng 23:2220–2228CrossRef Wang F, Zhang J, Peng LR, Wang GW, Sui YX (2015) Motion-precision control in bonnet-polishing. Opt Precis Eng 23:2220–2228CrossRef
74.
Zurück zum Zitat Ni Y, Li JQ, Wang Y, Huang QT, Yu JC (2008) An efficient method of computer controlled polishing for small aspheric lens. Opt Tech 34:33–35, 40 Ni Y, Li JQ, Wang Y, Huang QT, Yu JC (2008) An efficient method of computer controlled polishing for small aspheric lens. Opt Tech 34:33–35, 40
75.
Zurück zum Zitat Cho CH, Park SS, Ahn Y (2001) Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical polishing. Thin Solid Films 389:254–260CrossRef Cho CH, Park SS, Ahn Y (2001) Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical polishing. Thin Solid Films 389:254–260CrossRef
76.
Zurück zum Zitat Zhang CH, Luo JB, Wen SZ (2004) Analysis on flow properties of chemical mechanical polishing process. Lubr Eng 4:31–33 Zhang CH, Luo JB, Wen SZ (2004) Analysis on flow properties of chemical mechanical polishing process. Lubr Eng 4:31–33
77.
Zurück zum Zitat Zhang CH, Luo JB (2005) Micro-polar effects of flow features of slurries in chemical mechanical polishing process. Journal of Beijing Jiaotong University 29:74–77 Zhang CH, Luo JB (2005) Micro-polar effects of flow features of slurries in chemical mechanical polishing process. Journal of Beijing Jiaotong University 29:74–77
78.
Zurück zum Zitat Zhang CH, Luo JB, Wen SZ (2005) Effects of nano-scale particles in chemical mechanical polishing process. Acta Phys Sin 54:2123–2127CrossRef Zhang CH, Luo JB, Wen SZ (2005) Effects of nano-scale particles in chemical mechanical polishing process. Acta Phys Sin 54:2123–2127CrossRef
79.
Zurück zum Zitat Bai LS, Wang JP, Chu XF (2017) Mechanism and optimization of chemical-mechanically polishing ceramic glass substrate with CeO2 slurry. Diamond & Abrasives Eng 37:1–5, 10 Bai LS, Wang JP, Chu XF (2017) Mechanism and optimization of chemical-mechanically polishing ceramic glass substrate with CeO2 slurry. Diamond & Abrasives Eng 37:1–5, 10
80.
Zurück zum Zitat Ou LW, Wang YH, Hu HQ, Zhang LL, Dong ZG, Kang RK, Guo DM, Shi K (2019) Photochemically combined mechanical polishing of N-type gallium nitride wafer in high efficiency. Precis Eng 55:14–21CrossRef Ou LW, Wang YH, Hu HQ, Zhang LL, Dong ZG, Kang RK, Guo DM, Shi K (2019) Photochemically combined mechanical polishing of N-type gallium nitride wafer in high efficiency. Precis Eng 55:14–21CrossRef
81.
Zurück zum Zitat Meng FN, Zhang ZY, Gao PL, Meng XD, Liu J (2019) Research progress of chemical mechanical polishing slurry. Surface Tech 48:1–10, 23 Meng FN, Zhang ZY, Gao PL, Meng XD, Liu J (2019) Research progress of chemical mechanical polishing slurry. Surface Tech 48:1–10, 23
82.
Zurück zum Zitat Zhou Y, Pan GS, Gong H, Shi XL, Zou CL (2017) Characterization of sapphire chemical mechanical polishing performances using silica with different sizes and their removal mechanisms. Colloids Surf A Physicochem Eng Asp 513:153–159CrossRef Zhou Y, Pan GS, Gong H, Shi XL, Zou CL (2017) Characterization of sapphire chemical mechanical polishing performances using silica with different sizes and their removal mechanisms. Colloids Surf A Physicochem Eng Asp 513:153–159CrossRef
83.
Zurück zum Zitat Shi XL, Pan GS, Zhou Y, Gu ZH, Gong H, Zou CL (2014) Characterization of colloidal silica abrasives with different sizes and their chemical–mechanical polishing performance on 4H-SiC (0001). Appl Surf Sci 307:414–427CrossRef Shi XL, Pan GS, Zhou Y, Gu ZH, Gong H, Zou CL (2014) Characterization of colloidal silica abrasives with different sizes and their chemical–mechanical polishing performance on 4H-SiC (0001). Appl Surf Sci 307:414–427CrossRef
84.
Zurück zum Zitat Xu WH, Lu XC, Pan GS, Lei YZ, Luo JB (2011) Effects of the ultrasonic flexural vibration on the interaction between the abrasive particles; pad and sapphire substrate during chemical mechanical polishing (CMP). Appl Surf Sci 257:2905–2911CrossRef Xu WH, Lu XC, Pan GS, Lei YZ, Luo JB (2011) Effects of the ultrasonic flexural vibration on the interaction between the abrasive particles; pad and sapphire substrate during chemical mechanical polishing (CMP). Appl Surf Sci 257:2905–2911CrossRef
85.
Zurück zum Zitat Jindal A, Hegde S, Babu S (2002) Chemical mechanical polishing using mixed abrasive slurries. Electrochem Solid-State Lett 5:48–50CrossRef Jindal A, Hegde S, Babu S (2002) Chemical mechanical polishing using mixed abrasive slurries. Electrochem Solid-State Lett 5:48–50CrossRef
86.
Zurück zum Zitat Chen Y, Long RW (2011) Polishing behavior of PS/CeO2 hybrid microspheres with controlled shell thickness on silicon dioxide CMP. Appl Surf Sci 257:8679–8685CrossRef Chen Y, Long RW (2011) Polishing behavior of PS/CeO2 hybrid microspheres with controlled shell thickness on silicon dioxide CMP. Appl Surf Sci 257:8679–8685CrossRef
87.
Zurück zum Zitat Zhao XB, Long RW, Chen Y, Chen ZG (2010) Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior. Microelectron Eng 87:1716–1720CrossRef Zhao XB, Long RW, Chen Y, Chen ZG (2010) Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior. Microelectron Eng 87:1716–1720CrossRef
88.
Zurück zum Zitat Lee H, Jeong H (2015) Analysis of removal mechanism on oxide CMP using mixed abrasive slurry. Int J Precis Eng Manuf 16:603–607CrossRef Lee H, Jeong H (2015) Analysis of removal mechanism on oxide CMP using mixed abrasive slurry. Int J Precis Eng Manuf 16:603–607CrossRef
89.
Zurück zum Zitat Lee H, Lee D, Kim M, Jeong H (2017) Effect of mixing ratio of non-spherical particles in colloidal silica slurry on oxide CMP. Int J Precis Eng Manuf 18:1333–1338CrossRef Lee H, Lee D, Kim M, Jeong H (2017) Effect of mixing ratio of non-spherical particles in colloidal silica slurry on oxide CMP. Int J Precis Eng Manuf 18:1333–1338CrossRef
90.
Zurück zum Zitat Crawford N, Kim R, Williams K, Boldridge D, Liberatore M (2012) Shear thickening of chemical mechanical polishing slurries under high shear. Rheol Acta 51:637–647CrossRef Crawford N, Kim R, Williams K, Boldridge D, Liberatore M (2012) Shear thickening of chemical mechanical polishing slurries under high shear. Rheol Acta 51:637–647CrossRef
91.
Zurück zum Zitat Hoffman R (1974) Discontinuous and dilatant viscosity in concentrated suspensions. J Colloid Interface Sci 46:491–506CrossRef Hoffman R (1974) Discontinuous and dilatant viscosity in concentrated suspensions. J Colloid Interface Sci 46:491–506CrossRef
92.
Zurück zum Zitat Hoffman R (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions I. observation of a flow instability. Transactions of the Society of Rheology 16:155–173CrossRef Hoffman R (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions I. observation of a flow instability. Transactions of the Society of Rheology 16:155–173CrossRef
93.
Zurück zum Zitat Li M (2015) Fundamental research on shear-thickening polishing method. Hunan University, Changsha, China Li M (2015) Fundamental research on shear-thickening polishing method. Hunan University, Changsha, China
94.
Zurück zum Zitat Li M, Lyu BH, Yuan JL, Dong CC, Dai WT (2016) Material removal mathematics model of shear thickening polishing. Journal of Mechanical Engineering 52:142–151CrossRef Li M, Lyu BH, Yuan JL, Dong CC, Dai WT (2016) Material removal mathematics model of shear thickening polishing. Journal of Mechanical Engineering 52:142–151CrossRef
95.
Zurück zum Zitat Li M, Lyu BH, Yuan JL, Dong CC, Dai WT (2015) Shear-thickening polishing method. Int J Mach Tool Manu 94:88–99CrossRef Li M, Lyu BH, Yuan JL, Dong CC, Dai WT (2015) Shear-thickening polishing method. Int J Mach Tool Manu 94:88–99CrossRef
96.
Zurück zum Zitat Chen SH, Lyu BH, He QK, Yang YB, Shao Q, Song ZL, Yuan JL (2019) Simulation and experimental study on material removal function of shear thickening polishing cylindrical surface. Surface Technology 48:355–362 Chen SH, Lyu BH, He QK, Yang YB, Shao Q, Song ZL, Yuan JL (2019) Simulation and experimental study on material removal function of shear thickening polishing cylindrical surface. Surface Technology 48:355–362
97.
Zurück zum Zitat Lyu BH, Dong CC, Yuan JL, Sun L (2017) Experimental study on shear thickening polishing method for curved surface. International Journal of Nanomanufacturing 13:81–95CrossRef Lyu BH, Dong CC, Yuan JL, Sun L (2017) Experimental study on shear thickening polishing method for curved surface. International Journal of Nanomanufacturing 13:81–95CrossRef
98.
Zurück zum Zitat Weng HZ, Lyu BH, Hu GX, Shao Q, Dai WT (2017) Optimization experiments for shear thickening polishing of quartz substrates. Nanotechnology and Precision Engineering 15:227–233 Weng HZ, Lyu BH, Hu GX, Shao Q, Dai WT (2017) Optimization experiments for shear thickening polishing of quartz substrates. Nanotechnology and Precision Engineering 15:227–233
99.
Zurück zum Zitat Mi Q, Qin L, Li H, Guo ZD (2019) Optimization technology of liquid float polishing. Optical Technique 45:251–256 Mi Q, Qin L, Li H, Guo ZD (2019) Optimization technology of liquid float polishing. Optical Technique 45:251–256
100.
Zurück zum Zitat Chen T, Wang CH, Wu J, Liu SB, Zuo TC (2009) The current research situation of laser polishing technology. New Technology & New Process 9:70–73 Chen T, Wang CH, Wu J, Liu SB, Zuo TC (2009) The current research situation of laser polishing technology. New Technology & New Process 9:70–73
101.
Zurück zum Zitat Xiao YM, Bass M (1983) Thermal stress limitations to laser fire polishing of glasses. Appl Opt 22:2933–2936CrossRef Xiao YM, Bass M (1983) Thermal stress limitations to laser fire polishing of glasses. Appl Opt 22:2933–2936CrossRef
102.
Zurück zum Zitat Murahara M., (2000) Photo-chemical polishing of fused silica optics by using ArF excimer laser. In Proc. 2001 SPIE Laser-Induced Damage in Optical Materials: 547-552 (SPIE: Boulder, CO, US. 2000). Murahara M., (2000) Photo-chemical polishing of fused silica optics by using ArF excimer laser. In Proc. 2001 SPIE Laser-Induced Damage in Optical Materials: 547-552 (SPIE: Boulder, CO, US. 2000).
103.
Zurück zum Zitat Li XG, Han J, Xie H, Zhu PF, (2014) Research on ultrafast laser polishing monocrystalline-silicon. In Proc. The International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference. 944926 (icPOE: Xi’an, China, 2014). Li XG, Han J, Xie H, Zhu PF, (2014) Research on ultrafast laser polishing monocrystalline-silicon. In Proc. The International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference. 944926 (icPOE: Xi’an, China, 2014).
104.
Zurück zum Zitat Xie X (2007) Study on mechanism of polishing sapphire with short-wavelength laser. Guangdong University of Technology, Guangzhou, China Xie X (2007) Study on mechanism of polishing sapphire with short-wavelength laser. Guangdong University of Technology, Guangzhou, China
105.
Zurück zum Zitat Song YQ, 2007) Study on process of polishing sapphire with ultraviolet laser. (Guangdong University of Technology, Guangzhou, China. Song YQ, 2007) Study on process of polishing sapphire with ultraviolet laser. (Guangdong University of Technology, Guangzhou, China.
106.
Zurück zum Zitat Ramos J, Bourell D, Beaman J (2002) Surface over-melt during laser polishing of indirect-SLS metal parts. MRS Online Proceedings Library 758:191–199CrossRef Ramos J, Bourell D, Beaman J (2002) Surface over-melt during laser polishing of indirect-SLS metal parts. MRS Online Proceedings Library 758:191–199CrossRef
107.
Zurück zum Zitat Taylor L, Qiao J, Qiao J, (2015) Femtosecond laser polishing of optical materials. In Proc. SPIE Optifab. 9633 (SPIE: Rochester, NY, US, 2015). Taylor L, Qiao J, Qiao J, (2015) Femtosecond laser polishing of optical materials. In Proc. SPIE Optifab. 9633 (SPIE: Rochester, NY, US, 2015).
108.
Zurück zum Zitat Lyu KX, Han XS (2021) Research on numerical simulation of ultrafast laser polishing brittle optical materials. Laser & Optoelectronics Progress 58:053201 Lyu KX, Han XS (2021) Research on numerical simulation of ultrafast laser polishing brittle optical materials. Laser & Optoelectronics Progress 58:053201
109.
Zurück zum Zitat Heidrich S, Willenborg E, Richmann A (2011) Development of a laser based process chain for manufacturing freeform optics. Phys Procedia 12:519–528CrossRef Heidrich S, Willenborg E, Richmann A (2011) Development of a laser based process chain for manufacturing freeform optics. Phys Procedia 12:519–528CrossRef
110.
Zurück zum Zitat Heidrich S, Richmann A, Schmitz P, Willenborg E, Wissenbach K, Loosen P, Poprawe R (2014) Optics manufacturing by laser radiation. Opt Lasers Eng 59:34–40CrossRef Heidrich S, Richmann A, Schmitz P, Willenborg E, Wissenbach K, Loosen P, Poprawe R (2014) Optics manufacturing by laser radiation. Opt Lasers Eng 59:34–40CrossRef
111.
Zurück zum Zitat Weingarten C, Schmickler A, Willenborg E, Wissenbach K, Poprawe R (2017) Laser polishing and laser shape correction of optical glass. Journal of Laser Applications 29:011702CrossRef Weingarten C, Schmickler A, Willenborg E, Wissenbach K, Poprawe R (2017) Laser polishing and laser shape correction of optical glass. Journal of Laser Applications 29:011702CrossRef
112.
Zurück zum Zitat Yu XB, 2014) Research on key technologies of figure correction of ultrasonic-magnetorheological compound finishing. (Harbin Institute of Technology, Harbin, China. Yu XB, 2014) Research on key technologies of figure correction of ultrasonic-magnetorheological compound finishing. (Harbin Institute of Technology, Harbin, China.
113.
Zurück zum Zitat Lin YY, 2010) Research on figure error correction technique in ultrasonic-magnetorheological compound finishing. (Harbin Institute of Technology, Harbin, China. Lin YY, 2010) Research on figure error correction technique in ultrasonic-magnetorheological compound finishing. (Harbin Institute of Technology, Harbin, China.
114.
Zurück zum Zitat Wang HJ, Zhang FH, Zhao H (2007) Effect of several processing parameters on material removal ratio in ultrasonic-magnetorheological compound finishing. Opt Precis Eng 15:1583–1588 Wang HJ, Zhang FH, Zhao H (2007) Effect of several processing parameters on material removal ratio in ultrasonic-magnetorheological compound finishing. Opt Precis Eng 15:1583–1588
115.
Zurück zum Zitat Chen YC, 2007) Design of ultrasonic-magnetorheological compound finishing device and research of technology. (Harbin Institute of Technology, Harbin, China. Chen YC, 2007) Design of ultrasonic-magnetorheological compound finishing device and research of technology. (Harbin Institute of Technology, Harbin, China.
116.
Zurück zum Zitat Wang HJ, 2007) Research on the key technologies of ultrasonic-magnetorheological compound finishing. (Harbin Institute of Technology, Harbin, China. Wang HJ, 2007) Research on the key technologies of ultrasonic-magnetorheological compound finishing. (Harbin Institute of Technology, Harbin, China.
117.
Zurück zum Zitat Kordonski W, Shorey A, Sekeres A, (2003) New magnetically assisted finishing method: material removal with magnetorheological fluid jet. In Proc. SPIE Optical Science and Technology. 107-114 (SPIE: San Diego, CA, USA, 2003). Kordonski W, Shorey A, Sekeres A, (2003) New magnetically assisted finishing method: material removal with magnetorheological fluid jet. In Proc. SPIE Optical Science and Technology. 107-114 (SPIE: San Diego, CA, USA, 2003).
118.
Zurück zum Zitat Dai YF, Zhang XC, Li SY, Peng XQ (2009) Deterministic magnetorheological jet polishing technology. Journal of Mechanical Engineering 45:171–176CrossRef Dai YF, Zhang XC, Li SY, Peng XQ (2009) Deterministic magnetorheological jet polishing technology. Journal of Mechanical Engineering 45:171–176CrossRef
119.
Zurück zum Zitat Zhang XC, Dai YF, Li SY, Peng XQ (2007) Study on magnetorheological jet polishing technology. Machinery Design & Manufacture 12:114–116 Zhang XC, Dai YF, Li SY, Peng XQ (2007) Study on magnetorheological jet polishing technology. Machinery Design & Manufacture 12:114–116
120.
Zurück zum Zitat Wang T, Cheng HB, Zhang WG, Yang H, Wu WT (2016) Restraint of path effect on optical surface in magnetorheological jet polishing. Appl Opt 55:935–942CrossRef Wang T, Cheng HB, Zhang WG, Yang H, Wu WT (2016) Restraint of path effect on optical surface in magnetorheological jet polishing. Appl Opt 55:935–942CrossRef
121.
Zurück zum Zitat Wang T, Cheng HB, Yang H, Wu WT, Tam HY (2015) Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model. Appl Opt 54:6433–6440CrossRef Wang T, Cheng HB, Yang H, Wu WT, Tam HY (2015) Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model. Appl Opt 54:6433–6440CrossRef
122.
Zurück zum Zitat Wang T, Cheng HB, Tam HY (2014) Mathematic models and material removal characteristics of multi-gesture jetting using magnetorheological fluid. Appl Opt 53:7804–7813CrossRef Wang T, Cheng HB, Tam HY (2014) Mathematic models and material removal characteristics of multi-gesture jetting using magnetorheological fluid. Appl Opt 53:7804–7813CrossRef
123.
Zurück zum Zitat Wang T, Cheng HB, Chen Y, Tam HY (2014) Multiplex path for magnetorheological jet polishing with vertical impinging. Appl Opt 53:2012–2019CrossRef Wang T, Cheng HB, Chen Y, Tam HY (2014) Multiplex path for magnetorheological jet polishing with vertical impinging. Appl Opt 53:2012–2019CrossRef
124.
Zurück zum Zitat Li PY, Cheung MF, Tong H, Cheng HB, Yam Y (2014) Design and implementation of a technique for iterative magnetorheological jet polishing. International Journal of Optomechatronics 8:195–205CrossRef Li PY, Cheung MF, Tong H, Cheng HB, Yam Y (2014) Design and implementation of a technique for iterative magnetorheological jet polishing. International Journal of Optomechatronics 8:195–205CrossRef
125.
Zurück zum Zitat Kim WB, Nam E, Min BK, Choi DS, Je TJ, Jeon EC (2015) Material removal of glass by magnetorheological fluid jet. Int J Precis Eng Manuf 14:629–637CrossRef Kim WB, Nam E, Min BK, Choi DS, Je TJ, Jeon EC (2015) Material removal of glass by magnetorheological fluid jet. Int J Precis Eng Manuf 14:629–637CrossRef
126.
Zurück zum Zitat Jain V, Ranjan P, Suri V, Komanduri R (2010) Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications. CIRP Ann 59:323–328CrossRef Jain V, Ranjan P, Suri V, Komanduri R (2010) Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications. CIRP Ann 59:323–328CrossRef
127.
Zurück zum Zitat Ghai V, Ranjan P, Batish A, Singh H (2018) Atomic-level finishing of aluminum alloy by chemo-mechanical magneto-rheological finishing (CMMRF) for optical applications. J Manuf Process 32:635–643CrossRef Ghai V, Ranjan P, Batish A, Singh H (2018) Atomic-level finishing of aluminum alloy by chemo-mechanical magneto-rheological finishing (CMMRF) for optical applications. J Manuf Process 32:635–643CrossRef
128.
Zurück zum Zitat Yin SH, Wang YQ, Li YP, Kang RK, Chen FJ, Hu T (2016) Experimental study on magnetorheological chemical polishing for sapphire substrate. Journal of Mechanical Engineering 52:80–87CrossRef Yin SH, Wang YQ, Li YP, Kang RK, Chen FJ, Hu T (2016) Experimental study on magnetorheological chemical polishing for sapphire substrate. Journal of Mechanical Engineering 52:80–87CrossRef
129.
Zurück zum Zitat Yang ZQ, Li H, Guo ZD (2019) Study on magnetorheological chemico-mechanical polishing technique for sapphire. Journal of Xi’an Technological University 39:266–272 Yang ZQ, Li H, Guo ZD (2019) Study on magnetorheological chemico-mechanical polishing technique for sapphire. Journal of Xi’an Technological University 39:266–272
130.
Zurück zum Zitat Xu XF, Guo Q, Huang YS, Hu JD, Peng W (2011) Chemical mechanical polishing using magnetic composite abrasives slurry and experimental study on polishing performance. Journal of Mechanical Engineering 47:186–192CrossRef Xu XF, Guo Q, Huang YS, Hu JD, Peng W (2011) Chemical mechanical polishing using magnetic composite abrasives slurry and experimental study on polishing performance. Journal of Mechanical Engineering 47:186–192CrossRef
131.
Zurück zum Zitat Lu Y, Tani Y, Kawata K (2002) Proposal of new polishing technology without using a polishing pad. CIRP Ann Manuf Technol 51:255–258CrossRef Lu Y, Tani Y, Kawata K (2002) Proposal of new polishing technology without using a polishing pad. CIRP Ann Manuf Technol 51:255–258CrossRef
132.
Zurück zum Zitat Dai WT, 2016) Study on high efficiency acoustic assisted shear thickening polishing method. (Zhejiang University of Technology, Hangzhou, China. Dai WT, 2016) Study on high efficiency acoustic assisted shear thickening polishing method. (Zhejiang University of Technology, Hangzhou, China.
133.
Zurück zum Zitat Weng HZ, 2017) Basic study on high efficiency electrolysis compounded shear thickening polishing method. (Zhejiang University of Technology, Hangzhou, China. Weng HZ, 2017) Basic study on high efficiency electrolysis compounded shear thickening polishing method. (Zhejiang University of Technology, Hangzhou, China.
134.
Zurück zum Zitat Xu WH, Lu XC, Pan GS, Lei YZ, Luo JB (2010) Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate. Appl Surf Sci 256:3936–3940CrossRef Xu WH, Lu XC, Pan GS, Lei YZ, Luo JB (2010) Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate. Appl Surf Sci 256:3936–3940CrossRef
135.
Zurück zum Zitat Zhong M, Yuan RJ, Li XB, Chen JF, Xu WH (2018) Effects of abrasive particles and pads’ characteristics on ultrasonic assisted chemical mechanical polishing for sapphire. China Surface Engineering 31:125–132 Zhong M, Yuan RJ, Li XB, Chen JF, Xu WH (2018) Effects of abrasive particles and pads’ characteristics on ultrasonic assisted chemical mechanical polishing for sapphire. China Surface Engineering 31:125–132
136.
Zurück zum Zitat Zhang L, Hou H, Han YJ, Wang X (2019) Ultrasonic and electrorheological integrated polishing process. Journal of Northeastern University (Natural Science) 40:356–359 Zhang L, Hou H, Han YJ, Wang X (2019) Ultrasonic and electrorheological integrated polishing process. Journal of Northeastern University (Natural Science) 40:356–359
137.
Zurück zum Zitat Hou H (2018) Research on ultrasonic electrorheological effect compound polishing. Jilin University, Jilin, China Hou H (2018) Research on ultrasonic electrorheological effect compound polishing. Jilin University, Jilin, China
138.
Zurück zum Zitat Li J (2017) Investigation into ultra-precision machining induced subsurface damage in nanocrystalline materials. Hunan University, Changsha, China Li J (2017) Investigation into ultra-precision machining induced subsurface damage in nanocrystalline materials. Hunan University, Changsha, China
139.
Zurück zum Zitat Li XT, (2014) Study on friction mechanism and test in micro scale forming. (Huazhong University of Science &Technology, Wuhan, China). Li XT, (2014) Study on friction mechanism and test in micro scale forming. (Huazhong University of Science &Technology, Wuhan, China).
Metadaten
Titel
Review on polishing technology of small-scale aspheric optics
verfasst von
Yunfeng Peng
Bingyi Shen
Zhenzhong Wang
Ping Yang
Wei Yang
Guo Bi
Publikationsdatum
17.06.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 4/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07202-3

Weitere Artikel der Ausgabe 4/2021

The International Journal of Advanced Manufacturing Technology 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.