Skip to main content

2018 | OriginalPaper | Buchkapitel

Rheological Properties of Biological Structures, Scaffolds and Their Biomedical Applications

verfasst von : Sabra Rostami, Bora Garipcan

Erschienen in: Biological, Physical and Technical Basics of Cell Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rheology as the science of flow properties of materials is one of the most vital concepts that have greatly attracted the attention of biomedical engineers and bioengineers over the past few decades. It has been less than a century since the science of rheology was formally introduced to the scientific society. Over the past few decades rheological properties of living things including cells and tissues have been investigated and studied thoroughly. As a result various measurement techniques have been developed and used ever since such as Atomic Force Microscopy (AFM), optical measurement techniques, etc. Recent advancements of technology regarding submicron scale measurement enabled scientists to evaluate cellular behavior towards mechanical stimuli with ultra-precision. Data obtained from these studies have revealed vital information regarding effects of mechanical properties of cells on cellular functions such as adhesion, proliferation and migration, and differentiation. Additionally rheological properties of most tissues in human body were measured and some results have been configured into engineered scaffolds along with being used as diagnostic tools. Despite the fact that there are hundreds of studies regarding rheological properties of cells and tissues, there are still so many unsolved problems and unanswered questions concerning fabrication of ideal devices and implants that need to be solved and answered. Hence the hot topic of principles and influence of rheology on living materials has become an appealing and amusing research subject resulting in attainment of fascinating results, which so far have proven to be greatly helpful in unlocking wide range of unknowns of life itself. Of the uncountable number of researches conducted to this day regarding rheological properties of biomaterials a small portion of is discussed in this chapter as an introduction to the concept of rheology in living things and its significance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alenghat, F. J., & Ingber, D. E. (2002). Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Science’s STKE : Signal Transduction Knowledge Environment, 119, pe6.CrossRef Alenghat, F. J., & Ingber, D. E. (2002). Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Science’s STKE : Signal Transduction Knowledge Environment, 119, pe6.CrossRef
2.
Zurück zum Zitat Amblard, F., Maggs, A. C., Yurke, B., Pargellis, A. N., & Leibler, S. (1996). Subdiffusion and anomalous local viscoelasticity in actin networks. Physical Review Letters, 77(21), 4470–4473. CrossRef Amblard, F., Maggs, A. C., Yurke, B., Pargellis, A. N., & Leibler, S. (1996). Subdiffusion and anomalous local viscoelasticity in actin networks. Physical Review Letters, 77(21), 4470–4473. CrossRef
3.
Zurück zum Zitat Artmann, G. M. (1995 Sep–Oct). Microscopic stiffness and relaxation time of red blood in a flow chamber of stiffness and relaxation time of red blood cells in a flow chamber. Biorheology, 32(5), 553–570.CrossRef Artmann, G. M. (1995 Sep–Oct). Microscopic stiffness and relaxation time of red blood in a flow chamber of stiffness and relaxation time of red blood cells in a flow chamber. Biorheology, 32(5), 553–570.CrossRef
4.
Zurück zum Zitat Artmann, G. M., Sung, K. L., Horn, T., Whittemore, D., Norwich, G., & Chien, S. (1997). Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation. Biophysics Journal, 72, 1434.CrossRef Artmann, G. M., Sung, K. L., Horn, T., Whittemore, D., Norwich, G., & Chien, S. (1997). Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation. Biophysics Journal, 72, 1434.CrossRef
5.
Zurück zum Zitat Ayala, Y. A., Pontes, B., Ether, D. S., Pires, L. B., Araujo, G. R., Frases, S., et al. (2016). Rheological properties of cells measured by optical tweezers. BMC Biophysics, 9, 5. Ayala, Y. A., Pontes, B., Ether, D. S., Pires, L. B., Araujo, G. R., Frases, S., et al. (2016). Rheological properties of cells measured by optical tweezers. BMC Biophysics, 9, 5.
6.
Zurück zum Zitat Badalà, Federico, Nouri-mahdavi, Kouros, & Raoof, Duna A. (2008). NIH public access. Computer, 144(5), 724–732. Badalà, Federico, Nouri-mahdavi, Kouros, & Raoof, Duna A. (2008). NIH public access. Computer, 144(5), 724–732.
7.
Zurück zum Zitat Baskurt, Oguz K., & Meiselman, Herbert J. (2003). Blood rheology and hemodynamics. Seminars in Thrombosis and Hemostasis, 29(5), 435–450.CrossRef Baskurt, Oguz K., & Meiselman, Herbert J. (2003). Blood rheology and hemodynamics. Seminars in Thrombosis and Hemostasis, 29(5), 435–450.CrossRef
9.
Zurück zum Zitat Boudjema, F., Lounis, M., Khelidj, B., & Bessai, N. (2015). Rheological regional properties of brain tissue studied under cyclic creep/recovery shear stresses. Journal of Physics: Conference Series, 602(1), 6. Boudjema, F., Lounis, M., Khelidj, B., & Bessai, N. (2015). Rheological regional properties of brain tissue studied under cyclic creep/recovery shear stresses. Journal of Physics: Conference Series, 602(1), 6.
11.
Zurück zum Zitat Chan, C. J., Whyte, G., Boyde, L., Salbreux, G., & Guck, J. (2014). Impact of heating on passive and active biomechanics of suspended cells. Interface Focus, 4(2), 20130069. CrossRef Chan, C. J., Whyte, G., Boyde, L., Salbreux, G., & Guck, J. (2014). Impact of heating on passive and active biomechanics of suspended cells. Interface Focus, 4(2), 20130069. CrossRef
12.
Zurück zum Zitat Cheng, S., Clarke, E. C., & Bilston, L. E. (2008). Rheological properties of the tissues of the central nervous system: A review. Medical Engineering & Physics, 30(10), 1318–1337.CrossRef Cheng, S., Clarke, E. C., & Bilston, L. E. (2008). Rheological properties of the tissues of the central nervous system: A review. Medical Engineering & Physics, 30(10), 1318–1337.CrossRef
13.
Zurück zum Zitat Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 292(3), H1209–H1224. CrossRef Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 292(3), H1209–H1224. CrossRef
14.
Zurück zum Zitat Chien, S., Sung, K. L., Skalak, R., Usami, S., Tözeren, A. (1978, November 24). Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophysical Journal, 24, 463–487.CrossRef Chien, S., Sung, K. L., Skalak, R., Usami, S., Tözeren, A. (1978, November 24). Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophysical Journal, 24, 463–487.CrossRef
15.
Zurück zum Zitat Chmiel, B., Karkoszka, H., Cierpka, L., & Wiecek, A. (2005). Rheological properties of red blood cells in kidney transplant recipients: The role of lipid profile and type of immunosuppresion. Transplantation Proceedings, 37(4), 1885–1888.CrossRef Chmiel, B., Karkoszka, H., Cierpka, L., & Wiecek, A. (2005). Rheological properties of red blood cells in kidney transplant recipients: The role of lipid profile and type of immunosuppresion. Transplantation Proceedings, 37(4), 1885–1888.CrossRef
16.
Zurück zum Zitat Crocker, J. C., & Hoffman, B. D. (2007). Multiple-particle tracking and two-point microrheology in cells. Methods in Cell Biology, 83(7), 141–178.CrossRef Crocker, J. C., & Hoffman, B. D. (2007). Multiple-particle tracking and two-point microrheology in cells. Methods in Cell Biology, 83(7), 141–178.CrossRef
17.
Zurück zum Zitat Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., & Guilak, F. (2008). Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. Journal of Biomechanics, 41(2), 454–464.CrossRef Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., & Guilak, F. (2008). Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. Journal of Biomechanics, 41(2), 454–464.CrossRef
18.
Zurück zum Zitat Di Terlizzi, R., & Platt, S. (2006). The function, composition and analysis of cerebrospinal fluid in companion animals: Part I—Function and composition. Veterinary Journal, 172(3), 422–431. Di Terlizzi, R., & Platt, S. (2006). The function, composition and analysis of cerebrospinal fluid in companion animals: Part I—Function and composition. Veterinary Journal, 172(3), 422–431.
19.
Zurück zum Zitat Doherty, G. J., & McMahon, H. T. (2008). Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annual Review of Biophysics, 37(1), 65–95.CrossRef Doherty, G. J., & McMahon, H. T. (2008). Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annual Review of Biophysics, 37(1), 65–95.CrossRef
20.
Zurück zum Zitat Driessen, N. J. B., Mol, A., Bouten, C. V. C., & Baaijens, F. P. T. (2007). Modeling the mechanics of tissue-engineered human heart valve leaflets. Journal of Biomechanics, 40(2), 325–334.CrossRef Driessen, N. J. B., Mol, A., Bouten, C. V. C., & Baaijens, F. P. T. (2007). Modeling the mechanics of tissue-engineered human heart valve leaflets. Journal of Biomechanics, 40(2), 325–334.CrossRef
21.
Zurück zum Zitat Drury, J. L., & Dembo, M. (1999). Hydrodynamics of micropipette aspiration. Biophysical Journal, 76(1 Pt 1), 110–128.CrossRef Drury, J. L., & Dembo, M. (1999). Hydrodynamics of micropipette aspiration. Biophysical Journal, 76(1 Pt 1), 110–128.CrossRef
22.
Zurück zum Zitat Engelking, L. R. (2011). Chemical composition of living cells. Textbook of veterinary physiological chemistry (pp. 2–6). Academic Press. eBook ISBN: 9780123919106.CrossRef Engelking, L. R. (2011). Chemical composition of living cells. Textbook of veterinary physiological chemistry (pp. 2–6). Academic Press. eBook ISBN: 9780123919106.CrossRef
23.
Zurück zum Zitat Farrar, D. F., & Rose, J. (2001). Rheological properties of PMMA bone cements during curing. Biomaterials, 22(22), 3005–3013.CrossRef Farrar, D. F., & Rose, J. (2001). Rheological properties of PMMA bone cements during curing. Biomaterials, 22(22), 3005–3013.CrossRef
24.
Zurück zum Zitat Franck, C., Maskarinec, S. A., Tirrell, D. A., & Ravichandran, G. (2011). Three-dimensional traction force microscopy: A new tool for quantifying cell-matrix interactions. PLoS ONE, 6(3).CrossRef Franck, C., Maskarinec, S. A., Tirrell, D. A., & Ravichandran, G. (2011). Three-dimensional traction force microscopy: A new tool for quantifying cell-matrix interactions. PLoS ONE, 6(3).CrossRef
25.
Zurück zum Zitat Goldmann, W. H. (2012). Mechanotransduction in cells. Cell Biology International, 36(6), 567–570.CrossRef Goldmann, W. H. (2012). Mechanotransduction in cells. Cell Biology International, 36(6), 567–570.CrossRef
26.
Zurück zum Zitat Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T. J., Cunningham, C. C., & Käs, J. (2001). The optical stretcher: A novel laser tool to micromanipulate cells. Biophysical Journal, 81(2), 767–784.CrossRef Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T. J., Cunningham, C. C., & Käs, J. (2001). The optical stretcher: A novel laser tool to micromanipulate cells. Biophysical Journal, 81(2), 767–784.CrossRef
27.
Zurück zum Zitat Guilak, F., Tedrow, J. R., & Burgkart, R. (2000). Viscoelastic properties of the cell nucleus. Biochemical and Biophysical Research Communications, 269(3), 781–786.CrossRef Guilak, F., Tedrow, J. R., & Burgkart, R. (2000). Viscoelastic properties of the cell nucleus. Biochemical and Biophysical Research Communications, 269(3), 781–786.CrossRef
28.
Zurück zum Zitat Haase, K., & Pelling, A. E. (2015). Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society, Interface/the Royal Society, 12(104), 20140970.CrossRef Haase, K., & Pelling, A. E. (2015). Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society, Interface/the Royal Society, 12(104), 20140970.CrossRef
29.
Zurück zum Zitat Hale, C. M., Sun, S. X., & Wirtz, D. (2009). Resolving the role of actoymyosin contractility in cell microrheology. PLoS ONE, 4(9).CrossRef Hale, C. M., Sun, S. X., & Wirtz, D. (2009). Resolving the role of actoymyosin contractility in cell microrheology. PLoS ONE, 4(9).CrossRef
31.
Zurück zum Zitat Hasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M. R., et al. (2014). Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 10(1), 11–25.CrossRef Hasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M. R., et al. (2014). Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 10(1), 11–25.CrossRef
32.
Zurück zum Zitat Hasan, A., Ragaert, K., Swieszkowski, W., Selimović, Š., Paul, A., Camci-Unal, G., et al. (2014). Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics, 47(9), 1949–1963.CrossRef Hasan, A., Ragaert, K., Swieszkowski, W., Selimović, Š., Paul, A., Camci-Unal, G., et al. (2014). Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics, 47(9), 1949–1963.CrossRef
33.
34.
Zurück zum Zitat Hoffman, B. D., & Crocker, J. C. (2009). Cell mechanics: Dissecting the physical responses of cells to force. Annual Review of Biomedical Engineering, 11, 259–288.CrossRef Hoffman, B. D., & Crocker, J. C. (2009). Cell mechanics: Dissecting the physical responses of cells to force. Annual Review of Biomedical Engineering, 11, 259–288.CrossRef
36.
Zurück zum Zitat Icard-Arcizet, Delphine, Cardoso, Olivier, Richert, Alain, & Hénon, Sylvie. (2008). Cell stiffening in response to external stress is correlated to actin recruitment. Biophysical Journal, 94(7), 2906–2913.CrossRef Icard-Arcizet, Delphine, Cardoso, Olivier, Richert, Alain, & Hénon, Sylvie. (2008). Cell stiffening in response to external stress is correlated to actin recruitment. Biophysical Journal, 94(7), 2906–2913.CrossRef
37.
Zurück zum Zitat Irace, C., Carallo, C., Scavelli, F., Esposito, T., De Franceschi, M. S., Tripolino, C., & Gnasso, A. (2014). Influence of blood lipids on plasma and blood viscosity. Clinical Hemorheology and Microcirculation, 57(3), 283–290. Irace, C., Carallo, C., Scavelli, F., Esposito, T., De Franceschi, M. S., Tripolino, C., & Gnasso, A. (2014). Influence of blood lipids on plasma and blood viscosity. Clinical Hemorheology and Microcirculation, 57(3), 283–290.
39.
Zurück zum Zitat Kalejs, M., Stradins, P., Lacis, R., Ozolanta, I., Pavars, J., & Kasyanov, V. (2009). St Jude Epic Heart Valve bioprostheses versus native human and porcine aortic valves—Comparison of mechanical properties. Interactive Cardiovascular and Thoracic Surgery, 8(5), 553–556.CrossRef Kalejs, M., Stradins, P., Lacis, R., Ozolanta, I., Pavars, J., & Kasyanov, V. (2009). St Jude Epic Heart Valve bioprostheses versus native human and porcine aortic valves—Comparison of mechanical properties. Interactive Cardiovascular and Thoracic Surgery, 8(5), 553–556.CrossRef
40.
Zurück zum Zitat Kofahl, A. L., Theilenberg, S., Bindl, J., Ulucay, D., Wild, J., Napiletzki, S., et al. (2016). Combining rheology and MRI: Imaging healthy and tumorous brains based on mechanical properties. Magnetic Resonance in Medicine, 0, 1–11. Kofahl, A. L., Theilenberg, S., Bindl, J., Ulucay, D., Wild, J., Napiletzki, S., et al. (2016). Combining rheology and MRI: Imaging healthy and tumorous brains based on mechanical properties. Magnetic Resonance in Medicine, 0, 1–11.
41.
Zurück zum Zitat Kollmannsberger, P., & Fabry, B. (2007). High-force magnetic tweezers with force feedback for biological applications. Review of Scientific Instruments, 78(11), 1–6.CrossRef Kollmannsberger, P., & Fabry, B. (2007). High-force magnetic tweezers with force feedback for biological applications. Review of Scientific Instruments, 78(11), 1–6.CrossRef
42.
Zurück zum Zitat Kraning-Rush, C. M., Califano, J. P., & Reinhart-King, C. A. (2012). Cellular traction stresses increase with increasing metastatic potential. PLoS ONE, 7(2).CrossRef Kraning-Rush, C. M., Califano, J. P., & Reinhart-King, C. A. (2012). Cellular traction stresses increase with increasing metastatic potential. PLoS ONE, 7(2).CrossRef
43.
Zurück zum Zitat Laperrousaz, B., Drillon, G., Berguiga, L., Nicolini, F., Audit, B., Satta, V. M., et al. (2016). From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance. AIP Conference Proceedings (p. 1760). Laperrousaz, B., Drillon, G., Berguiga, L., Nicolini, F., Audit, B., Satta, V. M., et al. (2016). From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance. AIP Conference Proceedings (p. 1760).
44.
Zurück zum Zitat Last, J. A., Liliensiek, S. J., Nealey, P. F., & Murphy, C. J. (2009). Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. Journal of Structural Biology, 167(1), 19–24.CrossRef Last, J. A., Liliensiek, S. J., Nealey, P. F., & Murphy, C. J. (2009). Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. Journal of Structural Biology, 167(1), 19–24.CrossRef
45.
Zurück zum Zitat Lomakina, E. B., Spillmann, C. M., King, M. R., & Waugh, R. E. (2004). Rheological analysis and measurement of neutrophil indentation. Biophysical Journal, 87(6), 4246–4258.CrossRef Lomakina, E. B., Spillmann, C. M., King, M. R., & Waugh, R. E. (2004). Rheological analysis and measurement of neutrophil indentation. Biophysical Journal, 87(6), 4246–4258.CrossRef
46.
Zurück zum Zitat Lombardo, M., Lombardo, G., Carbone, G., De Santo, M. P., Barberi, R., & Serrao, S. (2012). Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy. Investigative Ophthalmology and Visual Science, 53(2), 1050–1057.CrossRef Lombardo, M., Lombardo, G., Carbone, G., De Santo, M. P., Barberi, R., & Serrao, S. (2012). Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy. Investigative Ophthalmology and Visual Science, 53(2), 1050–1057.CrossRef
47.
Zurück zum Zitat Lu, Y.-B., Franze, K., Seifert, G., Steinhäuser, C., Kirchhoff, F., Wolburg, H., et al. (2006). Viscoelastic properties of individual glial cells and neurons in the CNS. Proceedings of the National Academy of Sciences, 103(47), 17759–17764.CrossRef Lu, Y.-B., Franze, K., Seifert, G., Steinhäuser, C., Kirchhoff, F., Wolburg, H., et al. (2006). Viscoelastic properties of individual glial cells and neurons in the CNS. Proceedings of the National Academy of Sciences, 103(47), 17759–17764.CrossRef
48.
Zurück zum Zitat Lulevich, V., Zink, T., Chen, H. Y., Liu, F. T., & Liu, G. Y. (2006). Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir, 22(19), 8151–8155.CrossRef Lulevich, V., Zink, T., Chen, H. Y., Liu, F. T., & Liu, G. Y. (2006). Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir, 22(19), 8151–8155.CrossRef
50.
Zurück zum Zitat Matthews, B. D., Overby, D. R., Mannix, R., & Ingber, D. E. (2006). Cellular adaptation to mechanical stress: Role of integrins, rho, cytoskeletal tension and mechanosensitive ion channels. Journal of Cell Science, 119(Pt 3), 508–518.CrossRef Matthews, B. D., Overby, D. R., Mannix, R., & Ingber, D. E. (2006). Cellular adaptation to mechanical stress: Role of integrins, rho, cytoskeletal tension and mechanosensitive ion channels. Journal of Cell Science, 119(Pt 3), 508–518.CrossRef
51.
Zurück zum Zitat Moeendarbary, E., & Harris, A. R. (2014). Cell mechanics: Principles, practices, and prospects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(5), 371–388. Moeendarbary, E., & Harris, A. R. (2014). Cell mechanics: Principles, practices, and prospects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(5), 371–388.
52.
Zurück zum Zitat Morra, M., Giavaresi, G., Sartori, M., Ferrari, A., Parrilli, A., Bollati, D., et al. (2015). Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. Journal of Materials Science: Materials in Medicine, 26(4). http://dx.doi.org/10.1007/s10856-015-5483-6. Morra, M., Giavaresi, G., Sartori, M., Ferrari, A., Parrilli, A., Bollati, D., et al. (2015). Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. Journal of Materials Science: Materials in Medicine, 26(4). http://​dx.​doi.​org/​10.​1007/​s10856-015-5483-6.
53.
Zurück zum Zitat Munevar, S. (2004). Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. Journal of Cell Science, 117(1), 85–92.CrossRef Munevar, S. (2004). Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. Journal of Cell Science, 117(1), 85–92.CrossRef
54.
Zurück zum Zitat Müller, U. (2004). Integrins and extracellular matrix in animal models. Handbook of Experimental Pharmacology, 165, 217–241.CrossRef Müller, U. (2004). Integrins and extracellular matrix in animal models. Handbook of Experimental Pharmacology, 165, 217–241.CrossRef
55.
Zurück zum Zitat Nagayama, K., Adachi, A., & Matsumoto, T. (2011). Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate. Journal of Biomechanics, 44(15), 2699–2705.CrossRef Nagayama, K., Adachi, A., & Matsumoto, T. (2011). Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate. Journal of Biomechanics, 44(15), 2699–2705.CrossRef
56.
Zurück zum Zitat Nawaz, S., Sánchez, P., Bodensiek, K., Li, S., Simons, M., & Schaap, I. A. (2012). Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS ONE, 7(9).CrossRef Nawaz, S., Sánchez, P., Bodensiek, K., Li, S., Simons, M., & Schaap, I. A. (2012). Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS ONE, 7(9).CrossRef
57.
Zurück zum Zitat Oh, M.-J., Kuhr, F., Byfield, F., & Levitan, I. (2012). Micropipette aspiration of substrate-attached cells to estimate cell stiffness. Journal of Visualized Experiments, 67, e3886. Oh, M.-J., Kuhr, F., Byfield, F., & Levitan, I. (2012). Micropipette aspiration of substrate-attached cells to estimate cell stiffness. Journal of Visualized Experiments, 67, e3886.
58.
Zurück zum Zitat Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J., & Discher, D. E. (2007). Physical plasticity of the nucleus in stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15619–15624.CrossRef Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J., & Discher, D. E. (2007). Physical plasticity of the nucleus in stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15619–15624.CrossRef
59.
Zurück zum Zitat Park, Y., Best, C. A., Badizadegan, K., Dasari, R. R., Feld, M. S., Kuriabova, T., et al. (2010). Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6731–6736.CrossRef Park, Y., Best, C. A., Badizadegan, K., Dasari, R. R., Feld, M. S., Kuriabova, T., et al. (2010). Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6731–6736.CrossRef
60.
Zurück zum Zitat Pierini, F., Zembrzycki, K., Nakielski, P., Pawłowska, S., & Kowalewski, T. A. (2016). Atomic force microscopy combined with optical tweezers (AFM/OT). Measurement Science and Technology, 27(2), 25904.CrossRef Pierini, F., Zembrzycki, K., Nakielski, P., Pawłowska, S., & Kowalewski, T. A. (2016). Atomic force microscopy combined with optical tweezers (AFM/OT). Measurement Science and Technology, 27(2), 25904.CrossRef
61.
Zurück zum Zitat Pryor, L. S., Gage, E., Langevin, C. J., Herrera, F., Breithaupt, A. D., Gordon, C. R., et al. (2009). Review of bone substitutes. Craniomaxillofacial Trauma & Reconstruction, 2(3), 151–160.CrossRef Pryor, L. S., Gage, E., Langevin, C. J., Herrera, F., Breithaupt, A. D., Gordon, C. R., et al. (2009). Review of bone substitutes. Craniomaxillofacial Trauma & Reconstruction, 2(3), 151–160.CrossRef
62.
Zurück zum Zitat Pullarkat, P. A., Fernández, P. A., & Ott, Albrecht. (2007). Rheological properties of the eukaryotic cell cytoskeleton. Physics Reports, 449(1–3), 29–53.CrossRef Pullarkat, P. A., Fernández, P. A., & Ott, Albrecht. (2007). Rheological properties of the eukaryotic cell cytoskeleton. Physics Reports, 449(1–3), 29–53.CrossRef
63.
Zurück zum Zitat Quinto-Su, P. A., Kuss, C., Preiser, P. R., & Ohl, C.-D. (2011). Red blood cell rheology using single controlled laser-induced cavitation bubbles. Lab on a Chip, 11(4), 672–678.CrossRef Quinto-Su, P. A., Kuss, C., Preiser, P. R., & Ohl, C.-D. (2011). Red blood cell rheology using single controlled laser-induced cavitation bubbles. Lab on a Chip, 11(4), 672–678.CrossRef
64.
Zurück zum Zitat Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4,5-Bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell, 100(2), 221–228.CrossRef Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4,5-Bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell, 100(2), 221–228.CrossRef
65.
Zurück zum Zitat Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., et al. (2001). Focal contacts as mechanosensors. The Journal of Cell Biology, 153(6), 1175–1186.CrossRef Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., et al. (2001). Focal contacts as mechanosensors. The Journal of Cell Biology, 153(6), 1175–1186.CrossRef
66.
Zurück zum Zitat Roohani-Esfahani, S.-I., Newman, P., & Zreiqat, H. (2016). Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Scientific Reports, 6(February 2015), 19468. Roohani-Esfahani, S.-I., Newman, P., & Zreiqat, H. (2016). Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Scientific Reports, 6(February 2015), 19468.
67.
Zurück zum Zitat Rother, J., Nöding, H., Mey, I., & Janshoff, A. (2014). Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biology, 4(5), 140046.CrossRef Rother, J., Nöding, H., Mey, I., & Janshoff, A. (2014). Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biology, 4(5), 140046.CrossRef
69.
Zurück zum Zitat Schulze, C., Wetzel, F., Kueper, T., Malsen, A., Muhr, G., Jaspers, S., et al. (2012). Stiffening of human skin fibroblasts with age. Clinics in Plastic Surgery, 39(1), 9–20.CrossRef Schulze, C., Wetzel, F., Kueper, T., Malsen, A., Muhr, G., Jaspers, S., et al. (2012). Stiffening of human skin fibroblasts with age. Clinics in Plastic Surgery, 39(1), 9–20.CrossRef
70.
Zurück zum Zitat Shuck, L. Z., & Advani, S. H. (1972). Rheological response of human brain tissue in shear. Journal of Basic Engineering Trans ASME, 94 Ser D(4), 905–911.CrossRef Shuck, L. Z., & Advani, S. H. (1972). Rheological response of human brain tissue in shear. Journal of Basic Engineering Trans ASME, 94 Ser D(4), 905–911.CrossRef
71.
Zurück zum Zitat Sleep, J., Wilson, D., Simmons, R., & Gratzer, W. (1999). Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study. Biophysical Journal, 77(6), 3085–3095.CrossRef Sleep, J., Wilson, D., Simmons, R., & Gratzer, W. (1999). Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study. Biophysical Journal, 77(6), 3085–3095.CrossRef
72.
Zurück zum Zitat Stamenović, D. (2008). Rheological behavior of mammalian cells. Cellular and Molecular Life Sciences, 65(22), 3592–3605.CrossRef Stamenović, D. (2008). Rheological behavior of mammalian cells. Cellular and Molecular Life Sciences, 65(22), 3592–3605.CrossRef
73.
Zurück zum Zitat Supriya, B., Jun, D., Paul, B. C., & Dahms, T. E. S. (2012). Viscoelasticity in biological systems: A special focus on microbes. ISBN 978-953-51-0841-2, Publisher: InTech. Supriya, B., Jun, D., Paul, B. C., & Dahms, T. E. S. (2012). Viscoelasticity in biological systems: A special focus on microbes. ISBN 978-953-51-0841-2, Publisher: InTech.
74.
Zurück zum Zitat Thoumine, O., & Ott, A. (1997). Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. Journal of Cell Science, 110(Pt 1), 2109–2116. Thoumine, O., & Ott, A. (1997). Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. Journal of Cell Science, 110(Pt 1), 2109–2116.
75.
Zurück zum Zitat Tozeren, A., Skalak, R., Sung, K. P., & Chien, S. H. U. (1982). Viscoelastic behavior of erythrocyte membrane. Biophysical Society, 39(1), 23–32.CrossRef Tozeren, A., Skalak, R., Sung, K. P., & Chien, S. H. U. (1982). Viscoelastic behavior of erythrocyte membrane. Biophysical Society, 39(1), 23–32.CrossRef
76.
Zurück zum Zitat Trepat, X., Grabulosa, M., Puig, F., Maksym, G. N., Navajas, D., & Farré, R. (2004). Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology, 287(5), L1025–L1034.CrossRef Trepat, X., Grabulosa, M., Puig, F., Maksym, G. N., Navajas, D., & Farré, R. (2004). Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology, 287(5), L1025–L1034.CrossRef
77.
Zurück zum Zitat Tseng, Y., Kole, T. P., & Wirtz, D. (2002). Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophysical Journal, 83(6), 3162–3176.CrossRef Tseng, Y., Kole, T. P., & Wirtz, D. (2002). Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophysical Journal, 83(6), 3162–3176.CrossRef
78.
Zurück zum Zitat Van Citters, K. M., Hoffman, B. D., Massiera, G., & Crocker, J. C. (2006). The role of F-actin and myosin in epithelial cell rheology. Biophysical Journal, 91(10), 3946–3956.CrossRef Van Citters, K. M., Hoffman, B. D., Massiera, G., & Crocker, J. C. (2006). The role of F-actin and myosin in epithelial cell rheology. Biophysical Journal, 91(10), 3946–3956.CrossRef
81.
Zurück zum Zitat Vonna, Laurent, Wiedemann, Agnès, Aepfelbacher, Martin, & Sackmann, Erich. (2003). Local Force Induced Conical Protrusions of Phagocytic Cells. Journal of Cell Science, 116(Pt 5), 785–790.CrossRef Vonna, Laurent, Wiedemann, Agnès, Aepfelbacher, Martin, & Sackmann, Erich. (2003). Local Force Induced Conical Protrusions of Phagocytic Cells. Journal of Cell Science, 116(Pt 5), 785–790.CrossRef
83.
Zurück zum Zitat Wang, N., Tolic-Nørrelykke, I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., & Stamenovic, D. (2002). Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology. Cell Physiology, 282(3), C606–C616.CrossRef Wang, N., Tolic-Nørrelykke, I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., & Stamenovic, D. (2002). Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology. Cell Physiology, 282(3), C606–C616.CrossRef
Metadaten
Titel
Rheological Properties of Biological Structures, Scaffolds and Their Biomedical Applications
verfasst von
Sabra Rostami
Bora Garipcan
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7904-7_5

Neuer Inhalt