Skip to main content
Erschienen in: Cellulose 6/2018

16.04.2018 | Original Paper

Rheological properties of cellulose nanocrystal-polymeric systems

verfasst von: Baoliang Peng, Juntao Tang, Pingmei Wang, Jianhui Luo, Peiwen Xiao, Yuanping Lin, Kam Chiu Tam

Erschienen in: Cellulose | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rod-like cellulose nanocrystals (CNC) were incorporated into different systems containing polymers (most of them are soluble polysaccharides, such as chitosan, gum arabic, sodium alginate, hydroxypropyl methylcellulose and sodium carboxylmethyl cellulose) of varying charge properties and molecular structures. The dependence of the thickening and rheological behavior of CNC dispersion with concentration were compared with classic models for spheres. It is evident that rod-like particles are more effective in achieving viscosity enhancement at lower particle loading. By varying the concentrations of each polymeric system, the phase diagrams of non-absorbing and absorbing polymers were determined. The gelation behavior of anisotropic CNC dispersion in the presence of various kinds of polymers was investigated, and the thickening effect has the following trends: cationic > anionic > nonionic. In addition, the molecular weight and conformation of the polymer chains had an impact on the viscosity. Hydroxypropyl methylcellulose is the most effective in promoting gelation of 3 wt% CNC dispersion. Understanding the rheological properties of various CNC-polymer complexes will be critical for their application in oil and gas, food and consumer goods.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aubry T, Largenton B, Moan M (1999) Rheological study of fumed silica suspensions in chitosan solutions. Langmuir 15(7):2380–2383CrossRef Aubry T, Largenton B, Moan M (1999) Rheological study of fumed silica suspensions in chitosan solutions. Langmuir 15(7):2380–2383CrossRef
Zurück zum Zitat Balazs AC, Emrick T, Russell TP (2002) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110CrossRef Balazs AC, Emrick T, Russell TP (2002) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110CrossRef
Zurück zum Zitat Boluk Y, Lahiji R, Zhao L et al (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surfaces A Physicochem Eng Asp 377(1):297–303CrossRef Boluk Y, Lahiji R, Zhao L et al (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surfaces A Physicochem Eng Asp 377(1):297–303CrossRef
Zurück zum Zitat Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28(14):6114–6123CrossRefPubMed Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28(14):6114–6123CrossRefPubMed
Zurück zum Zitat Cassagnau P (2013) Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios. Polymer 54(18):4762–4775CrossRef Cassagnau P (2013) Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios. Polymer 54(18):4762–4775CrossRef
Zurück zum Zitat Chang Y, McLandsborough L, McClements DJ (2014) Antimicrobial delivery systems based on electrostatic complexes of cationic ɛ-polylysine and anionic gum arabic. Food Hydrocoll 35:137–143CrossRef Chang Y, McLandsborough L, McClements DJ (2014) Antimicrobial delivery systems based on electrostatic complexes of cationic ɛ-polylysine and anionic gum arabic. Food Hydrocoll 35:137–143CrossRef
Zurück zum Zitat Derakhshandeh B, Petekidis G, Shafiei Sabet S et al (2013) Ageing, yielding, and rheology of nanocrystalline cellulose suspensions. J Rheol 57(1):131–148CrossRef Derakhshandeh B, Petekidis G, Shafiei Sabet S et al (2013) Ageing, yielding, and rheology of nanocrystalline cellulose suspensions. J Rheol 57(1):131–148CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications Chem. Rev. 110(6):3479–3500 Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications Chem. Rev. 110(6):3479–3500
Zurück zum Zitat Hu Z, Cranston ED, Ng R et al (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30(10):2684–2692CrossRefPubMed Hu Z, Cranston ED, Ng R et al (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30(10):2684–2692CrossRefPubMed
Zurück zum Zitat Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46(1):73–76CrossRef Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46(1):73–76CrossRef
Zurück zum Zitat Jeong J, Li C, Kwon Y et al (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig 36(8):2233–2241CrossRef Jeong J, Li C, Kwon Y et al (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig 36(8):2233–2241CrossRef
Zurück zum Zitat Khouri S, Shams M, Tam KC (2014) Determination and prediction of physical properties of cellulose nanocrystals from dynamic light scattering measurements. J Nanoparticle Res 16(7):2499CrossRef Khouri S, Shams M, Tam KC (2014) Determination and prediction of physical properties of cellulose nanocrystals from dynamic light scattering measurements. J Nanoparticle Res 16(7):2499CrossRef
Zurück zum Zitat Li MC, Wu Q, Song K et al (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRef Li MC, Wu Q, Song K et al (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRef
Zurück zum Zitat Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohyd Polym 84(1):316–322CrossRef Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohyd Polym 84(1):316–322CrossRef
Zurück zum Zitat Lu A, Hemraz U, Khalili Z et al (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21(3):1239–1250CrossRef Lu A, Hemraz U, Khalili Z et al (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21(3):1239–1250CrossRef
Zurück zum Zitat Matheson RR Jr (1980) Viscosity of solutions of rigid rodlike macromolecules. Macromolecules 13(3):643–648CrossRef Matheson RR Jr (1980) Viscosity of solutions of rigid rodlike macromolecules. Macromolecules 13(3):643–648CrossRef
Zurück zum Zitat Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56CrossRef Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56CrossRef
Zurück zum Zitat Pang Q, Tang J, Huang H et al (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv Mater 27(39):6021–6028CrossRefPubMed Pang Q, Tang J, Huang H et al (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv Mater 27(39):6021–6028CrossRefPubMed
Zurück zum Zitat Peng BL, Dhar N, Liu HL et al (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206CrossRef Peng BL, Dhar N, Liu HL et al (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206CrossRef
Zurück zum Zitat Qiao C, Chen G, Zhang J et al (2016) Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocoll 55:19–25CrossRef Qiao C, Chen G, Zhang J et al (2016) Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocoll 55:19–25CrossRef
Zurück zum Zitat Reid MS, Villalobos M, Cranston ED (2017) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr Opin Colloid Interface Sci 29:76–82CrossRef Reid MS, Villalobos M, Cranston ED (2017) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr Opin Colloid Interface Sci 29:76–82CrossRef
Zurück zum Zitat Risica D, Barbetta A, Vischetti L et al (2010) Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer 51(9):1972–1982CrossRef Risica D, Barbetta A, Vischetti L et al (2010) Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer 51(9):1972–1982CrossRef
Zurück zum Zitat Shafeiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8–9):741–751CrossRef Shafeiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8–9):741–751CrossRef
Zurück zum Zitat Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133CrossRefPubMed Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133CrossRefPubMed
Zurück zum Zitat Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359CrossRef Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359CrossRef
Zurück zum Zitat Shi Z, Tang J, Chen L et al (2015) Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J Mater Chem B 3(4):603–611CrossRef Shi Z, Tang J, Chen L et al (2015) Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J Mater Chem B 3(4):603–611CrossRef
Zurück zum Zitat Tan BH, Tam KC, Lam YC et al (2004) A semi-empirical approach for modeling charged soft microgel particles. J Rheol 48(4):915–926CrossRef Tan BH, Tam KC, Lam YC et al (2004) A semi-empirical approach for modeling charged soft microgel particles. J Rheol 48(4):915–926CrossRef
Zurück zum Zitat Tan BH, Pelton RH, Tam KC (2010) Microstructure and rheological properties of thermo-responsive poly (N-isopropylacrylamide) microgels. Polymer 51(14):3238–3243CrossRef Tan BH, Pelton RH, Tam KC (2010) Microstructure and rheological properties of thermo-responsive poly (N-isopropylacrylamide) microgels. Polymer 51(14):3238–3243CrossRef
Zurück zum Zitat Tanaka R, Saito T, Ishii D et al (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589CrossRef Tanaka R, Saito T, Ishii D et al (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589CrossRef
Zurück zum Zitat Tang J, Song Y, Berry RM et al (2014a) Polyrhodanine coated cellulose nanocrystals as optical pH indicators. RSC Adv 4(104):60249–60252CrossRef Tang J, Song Y, Berry RM et al (2014a) Polyrhodanine coated cellulose nanocrystals as optical pH indicators. RSC Adv 4(104):60249–60252CrossRef
Zurück zum Zitat Tang J, Lee MFX, Zhang W et al (2014b) Dual responsive pickering emulsion stabilized by poly [2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals. Biomacromol 15(8):3052–3060CrossRef Tang J, Lee MFX, Zhang W et al (2014b) Dual responsive pickering emulsion stabilized by poly [2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals. Biomacromol 15(8):3052–3060CrossRef
Zurück zum Zitat Tang J, Song Y, Tanvir S et al (2015a) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3(8):1801–1809CrossRef Tang J, Song Y, Tanvir S et al (2015a) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3(8):1801–1809CrossRef
Zurück zum Zitat Tang J, Shi Z, Berry RM et al (2015b) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308CrossRef Tang J, Shi Z, Berry RM et al (2015b) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308CrossRef
Zurück zum Zitat Tang J, Berry RM, Tam KC (2016) Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting. Biomacromol 17(5):1748–1756CrossRef Tang J, Berry RM, Tam KC (2016) Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting. Biomacromol 17(5):1748–1756CrossRef
Zurück zum Zitat Tang J, Sisler J, Grishkewich N et al (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409CrossRefPubMed Tang J, Sisler J, Grishkewich N et al (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409CrossRefPubMed
Zurück zum Zitat ten Brinke AJW, Bailey L, Lekkerkerker HNW et al (2007) Rheology modification in mixed shape colloidal dispersions. Part I: pure components. Soft Matter 3(9):1145–1162CrossRef ten Brinke AJW, Bailey L, Lekkerkerker HNW et al (2007) Rheology modification in mixed shape colloidal dispersions. Part I: pure components. Soft Matter 3(9):1145–1162CrossRef
Zurück zum Zitat Tzoumaki MV, Moschakis T, Biliaderis CG (2011) Mixed aqueous chitin nanocrystal–whey protein dispersions: microstructure and rheological behavior. Food Hydrocoll 25(5):935–942CrossRef Tzoumaki MV, Moschakis T, Biliaderis CG (2011) Mixed aqueous chitin nanocrystal–whey protein dispersions: microstructure and rheological behavior. Food Hydrocoll 25(5):935–942CrossRef
Zurück zum Zitat Tzoumaki MV, Moschakis T, Biliaderis CG (2013) Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions. Carbohydr Polym 95(1):324–331CrossRefPubMed Tzoumaki MV, Moschakis T, Biliaderis CG (2013) Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions. Carbohydr Polym 95(1):324–331CrossRefPubMed
Zurück zum Zitat Ureña-Benavides EE, Ao G, Davis VA et al (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRef Ureña-Benavides EE, Ao G, Davis VA et al (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRef
Zurück zum Zitat Wu Q, Meng Y, Wang S et al (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):40525 Wu Q, Meng Y, Wang S et al (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):40525
Metadaten
Titel
Rheological properties of cellulose nanocrystal-polymeric systems
verfasst von
Baoliang Peng
Juntao Tang
Pingmei Wang
Jianhui Luo
Peiwen Xiao
Yuanping Lin
Kam Chiu Tam
Publikationsdatum
16.04.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1775-6

Weitere Artikel der Ausgabe 6/2018

Cellulose 6/2018 Zur Ausgabe