Skip to main content
Erschienen in: Archive of Applied Mechanics 1/2019

24.08.2018 | Special

Rheological properties of magnetic biogels

verfasst von: A. Zubarev, A. B. Bonhome-Espinosa, M. Alaminos, J. D. G. Duran, M. T. Lopez-Lopez

Erschienen in: Archive of Applied Mechanics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report an experimental and theoretical study of the rheological properties of magnetic biogels consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions. We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some theoretical models that explain the observed strong concentration effects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bose, H., Rabindranath, R., Ehrlich, J.: Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 23(9), 989–994 (2012)CrossRef Bose, H., Rabindranath, R., Ehrlich, J.: Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 23(9), 989–994 (2012)CrossRef
2.
Zurück zum Zitat Filipcsei, G., Csetneki, I., Szilagyi, A., Zrınyi, M.: Magnetic field-responsive smart polymer composites. In: Advances in Polymer Science, vol. 206. Springer, Berlin Heidelberg, pp. 137–189 (2007) Filipcsei, G., Csetneki, I., Szilagyi, A., Zrınyi, M.: Magnetic field-responsive smart polymer composites. In: Advances in Polymer Science, vol. 206. Springer, Berlin Heidelberg, pp. 137–189 (2007)
3.
Zurück zum Zitat Boczkowska, A., Awietjan, S.: Tuning active magnetorheological elastomers for damping applications. Mater. Sci. Forum 636–637, 766–771 (2010)CrossRef Boczkowska, A., Awietjan, S.: Tuning active magnetorheological elastomers for damping applications. Mater. Sci. Forum 636–637, 766–771 (2010)CrossRef
4.
Zurück zum Zitat Dyke, S., Spencer, B., Sain, M., Carlson, J.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565–575 (1996)CrossRef Dyke, S., Spencer, B., Sain, M., Carlson, J.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565–575 (1996)CrossRef
5.
Zurück zum Zitat Occhiuzzi, A., Spizzuoco, M., Serino, G.: Experimental analysis of magnetorheological dampers for structural control. Smart Mater. Struct. 12, 703–711 (2003)CrossRef Occhiuzzi, A., Spizzuoco, M., Serino, G.: Experimental analysis of magnetorheological dampers for structural control. Smart Mater. Struct. 12, 703–711 (2003)CrossRef
6.
Zurück zum Zitat Carmona, F., Mouney, C.: Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. J. Mater. Sci. 27(5), 1322–1326 (1992)CrossRef Carmona, F., Mouney, C.: Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. J. Mater. Sci. 27(5), 1322–1326 (1992)CrossRef
7.
Zurück zum Zitat Feller, J., Linossier, I., Grohens, Y.: Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Mater. Lett. 57(1), 64–71 (2002)CrossRef Feller, J., Linossier, I., Grohens, Y.: Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Mater. Lett. 57(1), 64–71 (2002)CrossRef
8.
Zurück zum Zitat Bañobre-López, M., Piñeiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109(7), 07B313 (2011)CrossRef Bañobre-López, M., Piñeiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109(7), 07B313 (2011)CrossRef
9.
Zurück zum Zitat Bock, N., Riminucci, A., Dionigi, C., Russo, A., Tampieri, A., Landi, E.: A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6(3), 786–796 (2010)CrossRef Bock, N., Riminucci, A., Dionigi, C., Russo, A., Tampieri, A., Landi, E.: A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6(3), 786–796 (2010)CrossRef
10.
Zurück zum Zitat Lin, C., Metters, A.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58(12–13), 1379–1408 (2006)CrossRef Lin, C., Metters, A.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58(12–13), 1379–1408 (2006)CrossRef
11.
Zurück zum Zitat Langer, R.: New methods of drug delivery. Science 249(4976), 1527–1533 (1990)CrossRef Langer, R.: New methods of drug delivery. Science 249(4976), 1527–1533 (1990)CrossRef
12.
Zurück zum Zitat Mitragotri, S., Lahann, J.: Physical approaches to biomaterial design. Nat. Mater. 8, 15–21 (2009)CrossRef Mitragotri, S., Lahann, J.: Physical approaches to biomaterial design. Nat. Mater. 8, 15–21 (2009)CrossRef
13.
Zurück zum Zitat Choi, N.W., Cabodi, M., Held, B., Gleghorn, J.P., Bonassar, L.J.: Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007)CrossRef Choi, N.W., Cabodi, M., Held, B., Gleghorn, J.P., Bonassar, L.J.: Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007)CrossRef
14.
Zurück zum Zitat Kurlyandskaya, G.V., Fernández, E., Safronov, A.P., Svalov, A.V., Beketov, I., Beitia, A.B., García-Arribas, A., Blyakhman, F.A.: Giant magnetoimpedance biosensor for ferrogel detection: model system to evaluate properties of natural tissue. Appl. Phys. Lett. 106, 193702 (2015)CrossRef Kurlyandskaya, G.V., Fernández, E., Safronov, A.P., Svalov, A.V., Beketov, I., Beitia, A.B., García-Arribas, A., Blyakhman, F.A.: Giant magnetoimpedance biosensor for ferrogel detection: model system to evaluate properties of natural tissue. Appl. Phys. Lett. 106, 193702 (2015)CrossRef
15.
Zurück zum Zitat Thevenot, J., Oliveira, H., Sandre, O., Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42(17), 7099–7116 (2013)CrossRef Thevenot, J., Oliveira, H., Sandre, O., Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42(17), 7099–7116 (2013)CrossRef
16.
Zurück zum Zitat Hunt, N.C., Grover, L.M.: Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett. 32(6), 733–742 (2010)CrossRef Hunt, N.C., Grover, L.M.: Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett. 32(6), 733–742 (2010)CrossRef
17.
Zurück zum Zitat Das, B., Mandal, M., Upadhyay, A., Chattopadhyay, P., Karak, N.: Bio-based hyperbranched polyurethane/Fe\(_{3}\)O\(_{4}\) nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater. 8(3), 035003 (2013)CrossRef Das, B., Mandal, M., Upadhyay, A., Chattopadhyay, P., Karak, N.: Bio-based hyperbranched polyurethane/Fe\(_{3}\)O\(_{4}\) nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater. 8(3), 035003 (2013)CrossRef
18.
Zurück zum Zitat de Santis, R., Gloria, A., Russo, T., d’Amora, U., Zeppetelli, S., Dionigi, C.: A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering. J. Appl. Polym. Sci. 122(6), 3599–3605 (2011)CrossRef de Santis, R., Gloria, A., Russo, T., d’Amora, U., Zeppetelli, S., Dionigi, C.: A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering. J. Appl. Polym. Sci. 122(6), 3599–3605 (2011)CrossRef
19.
Zurück zum Zitat Gloria, A., Russo, R., d’Amora, U., Zeppetelli, S., d’Alessandro, T., Sandri, M., et al.: Magnetic poly(\(\varepsilon \)-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc Interface 10(80), 20120833 (2013)CrossRef Gloria, A., Russo, R., d’Amora, U., Zeppetelli, S., d’Alessandro, T., Sandri, M., et al.: Magnetic poly(\(\varepsilon \)-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc Interface 10(80), 20120833 (2013)CrossRef
20.
Zurück zum Zitat Hu, S.H., Liu, T.Y., Tsai, C.H., Chen, S.Y.: Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 310(2), 2871–2873 (2007)CrossRef Hu, S.H., Liu, T.Y., Tsai, C.H., Chen, S.Y.: Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 310(2), 2871–2873 (2007)CrossRef
21.
Zurück zum Zitat Hu, H., Jiang, W., Lan, F., Zeng, X., Ma, S., Wu, Y.: Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Adv. 3, 879–886 (2013)CrossRef Hu, H., Jiang, W., Lan, F., Zeng, X., Ma, S., Wu, Y.: Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Adv. 3, 879–886 (2013)CrossRef
22.
Zurück zum Zitat Lai, K., Jiang, W., Tang, J.Z., Wu, Y., He, B., Wang, G., et al.: Superparamagnetic nano-composite scaffolds for promoting bone cell proliferation and defect reparation without a magnetic field. RSC Adv. 2, 13007–13017 (2012)CrossRef Lai, K., Jiang, W., Tang, J.Z., Wu, Y., He, B., Wang, G., et al.: Superparamagnetic nano-composite scaffolds for promoting bone cell proliferation and defect reparation without a magnetic field. RSC Adv. 2, 13007–13017 (2012)CrossRef
23.
Zurück zum Zitat Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T.: Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23(6), 660–672 (2013)CrossRef Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T.: Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23(6), 660–672 (2013)CrossRef
24.
Zurück zum Zitat Panseri, S., Cunha, C., Alessandro, T., Sandri, M., Giavaresi, G., Marcacci, M.: Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J. Nanobiotechnol. 10, 32 (2012)CrossRef Panseri, S., Cunha, C., Alessandro, T., Sandri, M., Giavaresi, G., Marcacci, M.: Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J. Nanobiotechnol. 10, 32 (2012)CrossRef
25.
Zurück zum Zitat Skaat, H., Ziv-Polat, O., Shahar, A., Last, D., Mardor, Y., Margel, S.: Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering. Adv. Healthc Mater. 1(2), 168–171 (2012)CrossRef Skaat, H., Ziv-Polat, O., Shahar, A., Last, D., Mardor, Y., Margel, S.: Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering. Adv. Healthc Mater. 1(2), 168–171 (2012)CrossRef
26.
Zurück zum Zitat Tampieri, A., Landi, E., Valentini, F., Sandri, M., d’Alessandro, T., Dediu, V., et al.: A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22(1), 015104 (2011)CrossRef Tampieri, A., Landi, E., Valentini, F., Sandri, M., d’Alessandro, T., Dediu, V., et al.: A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22(1), 015104 (2011)CrossRef
27.
Zurück zum Zitat Tampieri, A., d’Alessandro, T., Sandri, M., Sprio, S., Landi, E., Bertinetti, L.: Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 8(2), 843–851 (2012)CrossRef Tampieri, A., d’Alessandro, T., Sandri, M., Sprio, S., Landi, E., Bertinetti, L.: Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 8(2), 843–851 (2012)CrossRef
28.
Zurück zum Zitat Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Jiang, W., Wu, Y.: Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int. J. Nanomed. 7, 3365–3378 (2012)CrossRef Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Jiang, W., Wu, Y.: Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int. J. Nanomed. 7, 3365–3378 (2012)CrossRef
29.
Zurück zum Zitat Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Wu, Y., Gu, Z.W.: Preparation and properties of supermagnetic calcium phosphate composite scaffold. J. Inorg. Mater. 28(1), 79–84 (2013)CrossRef Zeng, X.B., Hu, H., Xie, L.Q., Lan, F., Wu, Y., Gu, Z.W.: Preparation and properties of supermagnetic calcium phosphate composite scaffold. J. Inorg. Mater. 28(1), 79–84 (2013)CrossRef
30.
Zurück zum Zitat Zhu, Y., Shang, F., Li, B., Dong, Y., Liu, Y., Lohe, M.R.: Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. J. Mater. Chem. B 1(9), 1279–1288 (2013)CrossRef Zhu, Y., Shang, F., Li, B., Dong, Y., Liu, Y., Lohe, M.R.: Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. J. Mater. Chem. B 1(9), 1279–1288 (2013)CrossRef
31.
Zurück zum Zitat Ziv-Polat, O., Skaat, H., Shahar, A., Margel, S.: Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int. J. Nanomed. 7, 1259–1274 (2012)CrossRef Ziv-Polat, O., Skaat, H., Shahar, A., Margel, S.: Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int. J. Nanomed. 7, 1259–1274 (2012)CrossRef
32.
Zurück zum Zitat Singh, R.K., Patel, K.D., Lee, J.H., Lee, E.J., Kim, J.H., Kim, T.H., et al.: Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLOS ONE 9, e91584 (2014)CrossRef Singh, R.K., Patel, K.D., Lee, J.H., Lee, E.J., Kim, J.H., Kim, T.H., et al.: Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLOS ONE 9, e91584 (2014)CrossRef
33.
Zurück zum Zitat Lopez-Lopez, M.T., Scionti, G., Oliveira, A.C., Duran, J.D.G., Campos, A., Alaminos, M., Rodriges, I.A.: Generation and characterization of novel magnetic field-responsive biomaterials. PLOS ONE 10(7), e0133878 (2015)CrossRef Lopez-Lopez, M.T., Scionti, G., Oliveira, A.C., Duran, J.D.G., Campos, A., Alaminos, M., Rodriges, I.A.: Generation and characterization of novel magnetic field-responsive biomaterials. PLOS ONE 10(7), e0133878 (2015)CrossRef
34.
Zurück zum Zitat Nicodemus, G.D., Bryant, S.J.: Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B 14(2), 149–165 (2008)CrossRef Nicodemus, G.D., Bryant, S.J.: Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B 14(2), 149–165 (2008)CrossRef
35.
Zurück zum Zitat Ladet, S., David, L., Domard, A.: Multi-membrane hydrogels. Nature 452, 76–79 (2008)CrossRef Ladet, S., David, L., Domard, A.: Multi-membrane hydrogels. Nature 452, 76–79 (2008)CrossRef
36.
Zurück zum Zitat Caló, E., Khutoryanskiy, V.V.: Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)CrossRef Caló, E., Khutoryanskiy, V.V.: Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)CrossRef
37.
Zurück zum Zitat Sharmin, F., et al.: Injectable hydrogels for regenerative engineering, pp. 1–32. Imperial College Press, London (2016)CrossRef Sharmin, F., et al.: Injectable hydrogels for regenerative engineering, pp. 1–32. Imperial College Press, London (2016)CrossRef
38.
Zurück zum Zitat Banobre-Lopez, M., Pineiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A., Dediu, V., Rivas, J.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109, 07B313 (2011)CrossRef Banobre-Lopez, M., Pineiro-Redondo, Y., de Santis, R., Gloria, A., Ambrosio, L., Tampieri, A., Dediu, V., Rivas, J.: Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 109, 07B313 (2011)CrossRef
39.
Zurück zum Zitat Yun, H.M., Ahn, S.J., Park, K.R., Kim, M.J., Kim, J.J., Jinc, G.Z., Kim, H.W., Kim, E.C.: Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85, 88–98 (2016)CrossRef Yun, H.M., Ahn, S.J., Park, K.R., Kim, M.J., Kim, J.J., Jinc, G.Z., Kim, H.W., Kim, E.C.: Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85, 88–98 (2016)CrossRef
40.
Zurück zum Zitat Rodriguez-Arco, L., Rodriguez, I.A., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Kuzhir, P., Duran, J.D.G., Lopez-Lopez, M.T.: Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale 8(15), 8138–8150 (2016)CrossRef Rodriguez-Arco, L., Rodriguez, I.A., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Kuzhir, P., Duran, J.D.G., Lopez-Lopez, M.T.: Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale 8(15), 8138–8150 (2016)CrossRef
41.
Zurück zum Zitat Lopez-Lopez, M.T., Rodriguez, I.A., Rodriguez-Arco, L., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Zubarev, A., Duran, J.D.G.: Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. J. Magn. Magn. Mater. 431, 110–114 (2017)CrossRef Lopez-Lopez, M.T., Rodriguez, I.A., Rodriguez-Arco, L., Carriel, V., Bonhome-Espinosa, A.B., Campos, F., Zubarev, A., Duran, J.D.G.: Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. J. Magn. Magn. Mater. 431, 110–114 (2017)CrossRef
42.
Zurück zum Zitat Bonhome-Espinosa, A.B., Campos, F., Rodriguez, I.A., Carriel, V., Marins, J.A., Zubarev, A., Duran, J.D.G., Lopez-Lopez, M.T.: Effect of particle concentration on the microstructural and macromechanical properties of biocompatible magnetic hydrogels. Soft Matter 13, 2928–2941 (2017)CrossRef Bonhome-Espinosa, A.B., Campos, F., Rodriguez, I.A., Carriel, V., Marins, J.A., Zubarev, A., Duran, J.D.G., Lopez-Lopez, M.T.: Effect of particle concentration on the microstructural and macromechanical properties of biocompatible magnetic hydrogels. Soft Matter 13, 2928–2941 (2017)CrossRef
43.
Zurück zum Zitat Scionti, G., Moral, M., Toledano, M., Osorio, R., Durán, J.D.G., Alaminos, M., Campos, A., López-López, M.T.: Effect of the hydration on the biomechanical properties in a fibrin–agarose tissue-like model. J. Biomed. Mater. Res. Part A 102A, 2573–2582 (2014)CrossRef Scionti, G., Moral, M., Toledano, M., Osorio, R., Durán, J.D.G., Alaminos, M., Campos, A., López-López, M.T.: Effect of the hydration on the biomechanical properties in a fibrin–agarose tissue-like model. J. Biomed. Mater. Res. Part A 102A, 2573–2582 (2014)CrossRef
44.
Zurück zum Zitat Alaminos, M., Sanchez-Quevedo, M.C., Munoz-Avila, J.I., Serrano, D., Medialdea, S., Carreras, I.: Construction of a complete rabbit cornea substitute using a fibrin–agarose scaffold. Invest. Ophthalmol. Vis. Sci. 47, 3311–3317 (2006)CrossRef Alaminos, M., Sanchez-Quevedo, M.C., Munoz-Avila, J.I., Serrano, D., Medialdea, S., Carreras, I.: Construction of a complete rabbit cornea substitute using a fibrin–agarose scaffold. Invest. Ophthalmol. Vis. Sci. 47, 3311–3317 (2006)CrossRef
45.
Zurück zum Zitat Bychkova, A.V., Sorokina, O.N., Kovarski, A.L., Shapiro, A.B., Leonova, V.B., Rozenfeld, M.A.: Interaction of fibrinogen with magnetite nanoparticles. Biophysics 55(4), 544–549 (2010)CrossRef Bychkova, A.V., Sorokina, O.N., Kovarski, A.L., Shapiro, A.B., Leonova, V.B., Rozenfeld, M.A.: Interaction of fibrinogen with magnetite nanoparticles. Biophysics 55(4), 544–549 (2010)CrossRef
46.
Zurück zum Zitat Cote, H.C.F., Lord, S.T., Pratt, K.P.: \(\gamma \)-Chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the \(\gamma \)-chain of human fibrinogen. Blood 92(7), 2195–2212 (1998) Cote, H.C.F., Lord, S.T., Pratt, K.P.: \(\gamma \)-Chain dysfibrinogenemias: molecular structure-function relationships of naturally occurring mutations in the \(\gamma \)-chain of human fibrinogen. Blood 92(7), 2195–2212 (1998)
47.
Zurück zum Zitat Zeliszewska, P., Bratek-Skicki, A., Adamczyk, Z., Ciesla, M.: Human fibrinogen adsorption on positively charged latex particles. Langmuir 30(37), 11165–11174 (2014)CrossRef Zeliszewska, P., Bratek-Skicki, A., Adamczyk, Z., Ciesla, M.: Human fibrinogen adsorption on positively charged latex particles. Langmuir 30(37), 11165–11174 (2014)CrossRef
48.
Zurück zum Zitat Pitaevskii, L.P., Lifshits, E.M.: Physical Kinetics. Butterworth-Heinemann, Oxford (1999) Pitaevskii, L.P., Lifshits, E.M.: Physical Kinetics. Butterworth-Heinemann, Oxford (1999)
49.
Zurück zum Zitat Rubistein, M., Colby, R.H.: Polymer Physics. Oxford University, New York (2003) Rubistein, M., Colby, R.H.: Polymer Physics. Oxford University, New York (2003)
50.
Zurück zum Zitat Grosberg, A., Khokhlov, A.: Statistical Physics of Macromolecules. Springer, Berlin (1994) Grosberg, A., Khokhlov, A.: Statistical Physics of Macromolecules. Springer, Berlin (1994)
51.
Zurück zum Zitat Christensen, R.M.: Mechanics of Composite Materials. Krieger Publishing Company, Malabar (1991) Christensen, R.M.: Mechanics of Composite Materials. Krieger Publishing Company, Malabar (1991)
Metadaten
Titel
Rheological properties of magnetic biogels
verfasst von
A. Zubarev
A. B. Bonhome-Espinosa
M. Alaminos
J. D. G. Duran
M. T. Lopez-Lopez
Publikationsdatum
24.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 1/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1450-2

Weitere Artikel der Ausgabe 1/2019

Archive of Applied Mechanics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.