Skip to main content

2014 | OriginalPaper | Buchkapitel

6. Rigid Body Dynamics

verfasst von : Pål Johan From, Jan Tommy Gravdahl, Kristin Ytterstad Pettersen

Erschienen in: Vehicle-Manipulator Systems

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamics is the study of how forces affect the motion of rigid bodies. In this chapter we introduce the fundamental topics required to derive the dynamic equations for rigid bodies with the results obtained in the previous chapters on rigid body kinematics as a starting point. In this way we obtain a well-defined formulation of the dynamics without singularities and other artifacts. The formulation can be used to derive the dynamics of bodies with different configuration spaces, i.e., both flat Euclidean spaces and non-Euclidean configuration spaces on manifolds. The equations are well suited for simulation and controller design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arnold, V. I. (1989). Mathematical methods of classical mechanics. Berlin: Springer. CrossRef Arnold, V. I. (1989). Mathematical methods of classical mechanics. Berlin: Springer. CrossRef
Zurück zum Zitat Bremer, H. (1988). Über eine zentralgleichung in der Dynamik (Vol. 68, pp. 307–311). Bremer, H. (1988). Über eine zentralgleichung in der Dynamik (Vol. 68, pp. 307–311).
Zurück zum Zitat Bullo, F., & Lewis, A. D. (2000). Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems. New York: Springer. Bullo, F., & Lewis, A. D. (2000). Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems. New York: Springer.
Zurück zum Zitat Cameron, J. M., & Book, W. J. (1997). Modeling mechanisms with nonholonomic joints using the Boltzmann-Hamel equations. The International Journal of Robotics Research, 16(1), 47–59. CrossRef Cameron, J. M., & Book, W. J. (1997). Modeling mechanisms with nonholonomic joints using the Boltzmann-Hamel equations. The International Journal of Robotics Research, 16(1), 47–59. CrossRef
Zurück zum Zitat Duindam, V., & Stramigioli, S. (2007). Lagrangian dynamics of open multibody systems with generalized holonomic and nonholonomic joints. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, USA (pp. 3342–3347). Duindam, V., & Stramigioli, S. (2007). Lagrangian dynamics of open multibody systems with generalized holonomic and nonholonomic joints. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, USA (pp. 3342–3347).
Zurück zum Zitat Duindam, V., & Stramigioli, S. (2008). Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Transactions on Robotics, 24(3), 517–526. CrossRef Duindam, V., & Stramigioli, S. (2008). Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Transactions on Robotics, 24(3), 517–526. CrossRef
Zurück zum Zitat Egeland, O., & Gravdahl, J. T. (2003). Modeling and simulation for automatic control. Trondheim: Marine Cybernetics AS. Egeland, O., & Gravdahl, J. T. (2003). Modeling and simulation for automatic control. Trondheim: Marine Cybernetics AS.
Zurück zum Zitat Fossen, T. I. (2002). Marine control systems. Trondheim: Marine Cybernetics AS. 3rd printing. Fossen, T. I. (2002). Marine control systems. Trondheim: Marine Cybernetics AS. 3rd printing.
Zurück zum Zitat Fossen, T. I., & Fjellstad, O. E. (1995). Nonlinear modelling of marine vehicles in 6 degrees of freedom. International Journal of Mathematical Modelling Systems, 1(1), 17–28. Fossen, T. I., & Fjellstad, O. E. (1995). Nonlinear modelling of marine vehicles in 6 degrees of freedom. International Journal of Mathematical Modelling Systems, 1(1), 17–28.
Zurück zum Zitat From, P. J. (2012a). An explicit formulation of singularity-free dynamic equations of mechanical systems in Lagrangian form—part one: single rigid bodies. Modeling, Identification and Control, 33(2), 45–60. CrossRef From, P. J. (2012a). An explicit formulation of singularity-free dynamic equations of mechanical systems in Lagrangian form—part one: single rigid bodies. Modeling, Identification and Control, 33(2), 45–60. CrossRef
Zurück zum Zitat From, P. J. (2012b). An explicit formulation of singularity-free dynamic equations of mechanical systems in Lagrangian form—part two: multibody systems. Modeling, Identification and Control, 33(2), 61–68. CrossRef From, P. J. (2012b). An explicit formulation of singularity-free dynamic equations of mechanical systems in Lagrangian form—part two: multibody systems. Modeling, Identification and Control, 33(2), 61–68. CrossRef
Zurück zum Zitat From, P. J., Duindam, V., & Stramigioli, S. (2012). Corrections to “Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints”. IEEE Transactions on Robotics, 28(6), 1431–1432. CrossRef From, P. J., Duindam, V., & Stramigioli, S. (2012). Corrections to “Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints”. IEEE Transactions on Robotics, 28(6), 1431–1432. CrossRef
Zurück zum Zitat Herman, P., & Kozlowski, K. (2006). A survey of equations of motion in terms of inertial quasi-velocities for serial manipulators. Archive of Applied Mechanics, 76(9–10), 579–614. CrossRefMATH Herman, P., & Kozlowski, K. (2006). A survey of equations of motion in terms of inertial quasi-velocities for serial manipulators. Archive of Applied Mechanics, 76(9–10), 579–614. CrossRefMATH
Zurück zum Zitat Jarzbowska, E. (2008). Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. Nonlinear Analysis, 71(12), 118–131. CrossRef Jarzbowska, E. (2008). Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. Nonlinear Analysis, 71(12), 118–131. CrossRef
Zurück zum Zitat Kane, T. R., & Levinson, D. A. (1985). Dynamics: theory and applications. New York: McGraw Hill. Kane, T. R., & Levinson, D. A. (1985). Dynamics: theory and applications. New York: McGraw Hill.
Zurück zum Zitat Kane, T. R., Likins, P. W., & Levinson, D. A. (1983). Spacecraft dynamics. New York: McGraw Hill. Kane, T. R., Likins, P. W., & Levinson, D. A. (1983). Spacecraft dynamics. New York: McGraw Hill.
Zurück zum Zitat Kozlowski, K., & Herman, P. (2008). Control of robot manipulators in terms of quasi-velocities. Journal of Intelligent & Robotic Systems, 53(3), 205–221. CrossRef Kozlowski, K., & Herman, P. (2008). Control of robot manipulators in terms of quasi-velocities. Journal of Intelligent & Robotic Systems, 53(3), 205–221. CrossRef
Zurück zum Zitat Kwatny, H. G., & Blankenship, G. (2000). Nonlinear control and analytical mechanics a computational approach. Boston: Birkhäuser. CrossRefMATH Kwatny, H. G., & Blankenship, G. (2000). Nonlinear control and analytical mechanics a computational approach. Boston: Birkhäuser. CrossRefMATH
Zurück zum Zitat Lagrange, J.-L. (1788). Mécanique analytique. Chez la Veuve Desaint. Lagrange, J.-L. (1788). Mécanique analytique. Chez la Veuve Desaint.
Zurück zum Zitat Lesser, M. (1992). A geometrical interpretation of Kanes equations. Journal of Mathematical and Physical Sciences, 436(1896), 69–87. MathSciNetCrossRefMATH Lesser, M. (1992). A geometrical interpretation of Kanes equations. Journal of Mathematical and Physical Sciences, 436(1896), 69–87. MathSciNetCrossRefMATH
Zurück zum Zitat Lewis, A. D. (1996). The geometry of the Gibbs-Appel equations and Gauss’s principle of least constraint. Reports on Mathematical Physics, 38(1), 11–28. MathSciNetCrossRefMATH Lewis, A. D. (1996). The geometry of the Gibbs-Appel equations and Gauss’s principle of least constraint. Reports on Mathematical Physics, 38(1), 11–28. MathSciNetCrossRefMATH
Zurück zum Zitat Marsden, J. E., & Ratiu, T. S. (1999). Texts in applied mathematics. Introduction to mechanics and symmetry (2nd ed.). New York: Springer. CrossRefMATH Marsden, J. E., & Ratiu, T. S. (1999). Texts in applied mathematics. Introduction to mechanics and symmetry (2nd ed.). New York: Springer. CrossRefMATH
Zurück zum Zitat Maruskin, J. M., & Bloch, A. M. (2007). The Boltzmann-Hamel equations for optimal control. In IEEE conference on decision and control, San Diego, CA, USA (pp. 554–559). Maruskin, J. M., & Bloch, A. M. (2007). The Boltzmann-Hamel equations for optimal control. In IEEE conference on decision and control, San Diego, CA, USA (pp. 554–559).
Zurück zum Zitat Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press. MATH Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press. MATH
Zurück zum Zitat Park, F. C., Bobrow, J. E., & Ploen, S. R. (1995). A Lie group formulation of robot dynamics. The International Journal of Robotics Research, 14(6), 609–618. CrossRef Park, F. C., Bobrow, J. E., & Ploen, S. R. (1995). A Lie group formulation of robot dynamics. The International Journal of Robotics Research, 14(6), 609–618. CrossRef
Zurück zum Zitat Poincaré, H. (1901). Sur une forme nouvelle des équations de la mécanique. Bull Astron. Poincaré, H. (1901). Sur une forme nouvelle des équations de la mécanique. Bull Astron.
Zurück zum Zitat Rao, A. (2006). Dynamics of particles and rigid bodies—a systematic approach. Cambridge: Cambridge University Press. Rao, A. (2006). Dynamics of particles and rigid bodies—a systematic approach. Cambridge: Cambridge University Press.
Zurück zum Zitat Rossmann, W. (2002). Lie groups—an introduction through linear algebra. Oxford: Oxford science publications. Rossmann, W. (2002). Lie groups—an introduction through linear algebra. Oxford: Oxford science publications.
Zurück zum Zitat Sagatun, S. I., & Fossen, T. I. (1992). Lagrangian formulation of underwater vehicles. In Conference of systems, man and cybernetics, Charlottesville, VA, USA (pp. 1029–1034). Sagatun, S. I., & Fossen, T. I. (1992). Lagrangian formulation of underwater vehicles. In Conference of systems, man and cybernetics, Charlottesville, VA, USA (pp. 1029–1034).
Zurück zum Zitat Selig, J. M. (2000). Geometric fundamentals of robotics. New York: Springer. CrossRef Selig, J. M. (2000). Geometric fundamentals of robotics. New York: Springer. CrossRef
Zurück zum Zitat Tanner, H. G., & Kyriakopoulos, K. J. (2001). Mobile manipulator modeling with Kane’s approach. Robotica, 19, 675–690. CrossRef Tanner, H. G., & Kyriakopoulos, K. J. (2001). Mobile manipulator modeling with Kane’s approach. Robotica, 19, 675–690. CrossRef
Zurück zum Zitat Zefran, M., & Bullo, F. (2004). Lagrangian dynamics, robotics and automation handbook. Boca Raton: CRC Press. Zefran, M., & Bullo, F. (2004). Lagrangian dynamics, robotics and automation handbook. Boca Raton: CRC Press.
Metadaten
Titel
Rigid Body Dynamics
verfasst von
Pål Johan From
Jan Tommy Gravdahl
Kristin Ytterstad Pettersen
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5463-1_6

Neuer Inhalt