Skip to main content

2013 | OriginalPaper | Buchkapitel

4. Rigid-Body Systems

verfasst von : Murilo G. Coutinho

Erschienen in: Guide to Dynamic Simulations of Rigid Bodies and Particle Systems

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the theoretical and practical aspects of designing and implementing dynamic-simulation engines for rigid-body systems. It covers both generic and specialized algorithms for non-convex and convex objects, respectively, including the special cases of thin and fast moving objects. Special attention is given to one of the most difficult and least understood topics in physically based modeling, namely, the computational techniques needed for determining all impulsive and contact forces between bodies with multiple simultaneous collisions and contacts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The algorithm presented in Appendix F (Chap. 11) limits the set of valid cut faces to simple polygons (without holes or double edges). This, in turn, makes the algorithm unsuitable for decomposing complex geometric shapes.
 
2
This issue has been already discussed in Sect. 1.​4.​4 of Chap. 1, but it is revisited here for completeness.
 
3
The direction defined by the line connecting the closest points at t i .
 
4
Since an edge is shared by two faces, the underlying implementation data structure representing the rigid body’s face must have its own edge structure because the same edge has one direction for one of its faces, and the reverse of this direction for the adjacent face.
 
5
This owes to the fact that the bodies have convex shapes. Unfortunately, the same does not apply for the case in which the bodies have non-convex shapes.
 
6
There is no particular preference for which violated plane should be used in the event that there is more than one.
 
7
We shall use the parameter λ to index the points on edge b 2.
 
8
Recall that \(\vec{p}_{2}\) is the point on b 2 closest to b 1.
 
9
Equation (4.33) is the same as Eq. (4.29), and is repeated here for convenience.
 
10
The plane in this case is defined as \(\pi_{\vec{p}_{i}, \vec{q}_{i}} = \{\vec{x}: (\vec {n}_{i} \cdot \vec{x} + d_{i}) = 0\}\), as opposed to \(\{\vec{x} : (\vec{n}_{i} \cdot \vec{x} - d_{i}) = 0\}\). The latter is the definition used in all other sections of this book.
 
11
We will use the vector-based notation as much as possible to keep the equations concise. However, there are cases in which we do need to rewrite the equations using the individual components of each vector, such as when computing the critical-friction coefficient covered later in this section.
 
12
Even though the use of the indexes is not particularly useful for the single-collision case, they will be extensively applied in the block-matrix representation of multiple collisions to distinguish between equations associated with collisions involving different rigid bodies.
 
13
If the actual coefficient of friction is equal to the critical coefficient of friction, then the sliding motion will stop exactly at the instant corresponding to the end of the collision.
 
14
Keep in mind that the velocities computed so far assume that the sliding motion continues throughout the collision.
 
15
The local-coordinate frame is defined by the collision normal and tangent plane.
 
16
Whenever a collision becomes a contact, the collision normal will be referred to as the contact normal.
 
17
Notice that F t is zero if a t (t) is zero.
 
Literatur
[Bar89]
Zurück zum Zitat Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. Comput. Graph. (Proc. SIGGRAPH) 23, 223–232 (1989) CrossRef Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. Comput. Graph. (Proc. SIGGRAPH) 23, 223–232 (1989) CrossRef
[Bar90]
Zurück zum Zitat Baraff, D.: Curved surfaces and coherence for non-penetrating rigid body simulations. Comput. Graph. (Proc. SIGGRAPH) 24, 19–28 (1990) CrossRef Baraff, D.: Curved surfaces and coherence for non-penetrating rigid body simulations. Comput. Graph. (Proc. SIGGRAPH) 24, 19–28 (1990) CrossRef
[Bar91]
Zurück zum Zitat Baraff, D.: Coping with friction for non-penetrating rigid body simulation. Comput. Graph. (Proc. SIGGRAPH) 25, 31–40 (1991) CrossRef Baraff, D.: Coping with friction for non-penetrating rigid body simulation. Comput. Graph. (Proc. SIGGRAPH) 25, 31–40 (1991) CrossRef
[Bar92]
Zurück zum Zitat Baraff, D.: Dynamic simulation of non-penetrating rigid bodies. PhD Thesis, Cornell University (1992) Baraff, D.: Dynamic simulation of non-penetrating rigid bodies. PhD Thesis, Cornell University (1992)
[Bar94]
Zurück zum Zitat Baraff, D.: Fast contact force computation for non-penetrating rigid bodies. Comput. Graph. (Proc. SIGGRAPH) 28, 24–29 (1994) CrossRef Baraff, D.: Fast contact force computation for non-penetrating rigid bodies. Comput. Graph. (Proc. SIGGRAPH) 28, 24–29 (1994) CrossRef
[BJ77b]
Zurück zum Zitat Beer, F.P., Johnston, E.R.: Vector Mechanics for Engineers: vol. 2—Dynamics. McGraw-Hill, New York (1977) Beer, F.P., Johnston, E.R.: Vector Mechanics for Engineers: vol. 2—Dynamics. McGraw-Hill, New York (1977)
[Bra91]
Zurück zum Zitat Brach, R.M. (ed.): Mechanical Impact Dynamics: Rigid Body Collisions. Wiley, New York (1991) Brach, R.M. (ed.): Mechanical Impact Dynamics: Rigid Body Collisions. Wiley, New York (1991)
[BW97]
Zurück zum Zitat Baraff, D., Witkin, A.: Partitioned dynamics. Technical Report CMU-RI-TR-97-33, The Robotics Institute at Carnegie Mellon University (1997) Baraff, D., Witkin, A.: Partitioned dynamics. Technical Report CMU-RI-TR-97-33, The Robotics Institute at Carnegie Mellon University (1997)
[BW98]
Zurück zum Zitat Baraff, D., Witkin, A.: Physically based modeling. SIGGRAPH Course Notes 13 (1998) Baraff, D., Witkin, A.: Physically based modeling. SIGGRAPH Course Notes 13 (1998)
[Cam97]
Zurück zum Zitat Cameron, S.: Enhancing GJK: computing minimum and penetration distances between convex polyhedra. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 3112–3117 (1997) CrossRef Cameron, S.: Enhancing GJK: computing minimum and penetration distances between convex polyhedra. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 3112–3117 (1997) CrossRef
[CKS98]
Zurück zum Zitat Campagna, S., Kobbelt, L., Seidel, H.-P.: Directed edges: a scalable representation for triangle meshes. J. Graph. Tools 3(4), 1–11 (1998) CrossRef Campagna, S., Kobbelt, L., Seidel, H.-P.: Directed edges: a scalable representation for triangle meshes. J. Graph. Tools 3(4), 1–11 (1998) CrossRef
[dBvKOS97]
Zurück zum Zitat de Berg, M., van Kreveld, M., Overmars, M., Schwartskopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997) MATH de Berg, M., van Kreveld, M., Overmars, M., Schwartskopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997) MATH
[DER86]
Zurück zum Zitat Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, London (1986) MATH Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, London (1986) MATH
[GJK88]
Zurück zum Zitat Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4(2), 193–203 (1988) CrossRef Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4(2), 193–203 (1988) CrossRef
[Gol50]
Zurück zum Zitat Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1950) Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1950)
[Hah88]
Zurück zum Zitat Hahn, J.K.: Realistic animation of rigid bodies. Comput. Graph. (Proc. SIGGRAPH), 299–308 (1988) Hahn, J.K.: Realistic animation of rigid bodies. Comput. Graph. (Proc. SIGGRAPH), 299–308 (1988)
[KSK97]
Zurück zum Zitat Kawachi, K., Suzuki, H., Kimura, F.: Simulation of rigid body motion with impulsive friction force. In: Proceedings IEEE International Symposium on Assembly and Task Planning, pp. 182–187 (1997) Kawachi, K., Suzuki, H., Kimura, F.: Simulation of rigid body motion with impulsive friction force. In: Proceedings IEEE International Symposium on Assembly and Task Planning, pp. 182–187 (1997)
[Löt84]
Zurück zum Zitat Lötstedt, P.: Numerical simulation of time-dependent contact friction problems in rigid-body mechanics. SIAM J. Sci. Stat. Comput. 5(2), 370–393 (1984) MATHCrossRef Lötstedt, P.: Numerical simulation of time-dependent contact friction problems in rigid-body mechanics. SIAM J. Sci. Stat. Comput. 5(2), 370–393 (1984) MATHCrossRef
[Mir96b]
Zurück zum Zitat Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. PhD Thesis, University of California, Berkeley (1996) Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. PhD Thesis, University of California, Berkeley (1996)
[Mir97]
Zurück zum Zitat Mirtich, B.: V-clip: fast and robust polyhedral collision detection. Technical Report TR-97-05, MERL: A Mitsubishi Electric Research Laboratory (1997) Mirtich, B.: V-clip: fast and robust polyhedral collision detection. Technical Report TR-97-05, MERL: A Mitsubishi Electric Research Laboratory (1997)
[Mir98]
Zurück zum Zitat Mirtich, B.: Rigid body contact: collision detection to force computation. Technical Report TR-98-01, MERL: A Mitsubishi Electric Research Laboratory (1998) Mirtich, B.: Rigid body contact: collision detection to force computation. Technical Report TR-98-01, MERL: A Mitsubishi Electric Research Laboratory (1998)
[OG97]
Zurück zum Zitat Ong, C.J., Gilbert, Elmer G.: The Gilbert–Johnson–Keerthi distance algorithm: a fast version for incremental motions. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 1183–1189 (1997) Ong, C.J., Gilbert, Elmer G.: The Gilbert–Johnson–Keerthi distance algorithm: a fast version for incremental motions. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 1183–1189 (1997)
[O’R98]
Zurück zum Zitat O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998) MATHCrossRef O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998) MATHCrossRef
[Sha10]
[Ski97]
Zurück zum Zitat Skiena, S.: The Algorithm Design Manual. Springer, Berlin (1997) MATH Skiena, S.: The Algorithm Design Manual. Springer, Berlin (1997) MATH
[TW98]
Zurück zum Zitat Thürmer, G., Wüthrich, C.A.: Computing vertex normals from polygonal facets. J. Graph. Tools 3(1), 43–46 (1998) MATHCrossRef Thürmer, G., Wüthrich, C.A.: Computing vertex normals from polygonal facets. J. Graph. Tools 3(1), 43–46 (1998) MATHCrossRef
[vdB99]
Zurück zum Zitat van den Bergen, G.: A fast robust GJK implementation for collision detection of convex bodies. J. Graph. Tools 4(2), 7–25 (1999) MathSciNetCrossRef van den Bergen, G.: A fast robust GJK implementation for collision detection of convex bodies. J. Graph. Tools 4(2), 7–25 (1999) MathSciNetCrossRef
Metadaten
Titel
Rigid-Body Systems
verfasst von
Murilo G. Coutinho
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4417-5_4