Allocating the right amount of resources to each service in any of the data centers in a cloud environment is a very difficult task. This task becomes much harder due to the dynamic nature of the workload and the fact that while long term statistics about the demand may be known, it is impossible to predict the exact demand in each point in time. As a result, service providers either over allocate resources and hurt the service cost efficiency, or run into situation where the allocated local resources are insufficient to support the current demand. In these cases, the service providers deploy overflow mechanisms such as redirecting traffic to a remote data center or temporarily leasing additional resources (at a higher price) from the cloud infrastructure owner. The additional cost is in many cases proportional to the amount of overflow demand.
In this paper we propose a stochastic based placement algorithm to find a solution that minimizes the expected total cost of ownership in case of two data centers. Stochastic combinatorial optimization was studied in several different scenarios. In this paper we extend and generalize two seemingly different lines of work and arrive at a general approximation algorithm for stochastic service placement that works well for a very large family of overflow cost functions. In addition to the theoretical study and the rigorous correctness proof, we also show using simulation based on real data that the approximation algorithm performs very well on realistic service workloads.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Kleinberg, J., Rabani, Y., Tardos, É.: Allocating bandwidth for bursty connections. SIAM J. Comput.
30(1), 191–217 (2000)
MathSciNetCrossRefMATH
2.
Goel, A., Indyk, P.: Stochastic load balancing and related problems. In: IEEE FOCS 1999, pp. 579–586 (1999)
3.
Wang, M., Meng, X., Zhang, L.: Consolidating virtual machines with dynamic bandwidth demand in data centers. In: IEEE INFOCOM 2011, pp. 71–75 (2011)
4.
Breitgand, D., Epstein, A.: Improving consolidation of virtual machines with risk-aware bandwidth oversubscription in compute clouds. In: IEEE INFOCOM 2012, pp. 2861–2865 (2012)
5.
Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M.: Stochastic shortest paths via Quasi-convex maximization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 552–563. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841036_50CrossRef
6.
Nikolova, E.: Approximation algorithms for offline risk-averse combinatorial optimization. Approximation, Randomization, and Combinatorial Optimization, pp. 338–351. Algorithms and Techniques (2010)
7.
Shabtai, G., Raz, D., Shavitt, Y.: Risk aware stochastic placement of cloud services: the multiple data center case. In: ALGOCLOUD 2017 (2017)
8.
Esseen, C.G.: A moment inequality with an application to the central limit theorem. Scand. Actuarial J.
1956(2), 160–170 (1956)
MathSciNetCrossRefMATH
9.
Shevtsova, I.: An improvement of convergence rate estimates in the Lyapunov theorem. Dokl. Math.
82, 862–864 (2010)
MathSciNetCrossRefMATH
10.
Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen (1971)
MATH
11.
O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)
CrossRefMATH
12.
Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
MATH
Über dieses Kapitel
Titel
Risk Aware Stochastic Placement of Cloud Services: The Case of Two Data Centers
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis. Jetzt gratis downloaden!