Skip to main content
Erschienen in:

14.07.2023

River Ecological Protection and Restoration Using Multi-source Remote Sensing Data

verfasst von: Xiangyong Zhang

Erschienen in: Mobile Networks and Applications | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the modern era, remote sensing capabilities of wireless sensor networks have enabled the preservation and restoration of river ecology. Remote sensing can detect changes and anomalies in river ecosystems, identify areas vulnerable to flooding, erosion, or sedimentation, and measure the effectiveness of restoration efforts over time by providing real-time monitoring and data collection. As a result, remote sensing technology can significantly improve our ability to protect and restore river ecosystems, resulting in improved sustainability and biodiversity conservation. However, adequate supervision is challenging due to technical bottlenecks encountered by river ecological protection and restoration and the wide range of river ecological protection areas. Firstly, this paper examines river ecological protection using multi-source remote sensing data. Secondly, it restores the appearance of river ecological protection by formulating monitoring targets, extracting river ecological remote sensing feature information, and using multiple remote sensing data for fusion and dynamic river ecology monitoring. Finally, this paper takes a river ecological protection restoration project as a research pilot. It establishes a multi-remote sensing monitoring mechanism for river protection and restoration in China by optimizing the indicators of river ecological protection and restoration and improving the accuracy of remote sensing’s data mining and analysis. This paper conducts several experiments that demonstrate that the proposed platform can improve the restoration effect of river ecology as well as the richness of river ecology. As a result, using multi-source remote sensing data for river ecological protection and restoration is critical to improving river ecological status.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
2.
Zurück zum Zitat Sun Xue-jun, Chun-Wei J, Lin (2022) A target recognition algorithm of multi-source remote sensing image based on visual internet of things. Mob Networks Appl 27(2):784–793CrossRef Sun Xue-jun, Chun-Wei J, Lin (2022) A target recognition algorithm of multi-source remote sensing image based on visual internet of things. Mob Networks Appl 27(2):784–793CrossRef
6.
9.
Zurück zum Zitat Chen D, Liu Z, Wang L, Dou M, Chen J, Li H (2013) Natural disaster monitoring with wireless sensor networks: a case study of data-intensive applications upon low-cost scalable systems. Mob Networks Appl 18:651–663CrossRef Chen D, Liu Z, Wang L, Dou M, Chen J, Li H (2013) Natural disaster monitoring with wireless sensor networks: a case study of data-intensive applications upon low-cost scalable systems. Mob Networks Appl 18:651–663CrossRef
20.
Zurück zum Zitat Mokhtar A, He H, Zhao H, Keo S, Bai C, Zhang C, Ma Y, Ibrahim A, Li Y, Li F, He W, Abdo AI, Zhou J (2020) Risks to water resources and development of a management strategy in the river basins of the Hengduan Mountains, Southwest China. Environ Science: Water Res Technol 6(3):656–678. https://doi.org/10.1039/c9ew00883gCrossRef Mokhtar A, He H, Zhao H, Keo S, Bai C, Zhang C, Ma Y, Ibrahim A, Li Y, Li F, He W, Abdo AI, Zhou J (2020) Risks to water resources and development of a management strategy in the river basins of the Hengduan Mountains, Southwest China. Environ Science: Water Res Technol 6(3):656–678. https://​doi.​org/​10.​1039/​c9ew00883gCrossRef
26.
Zurück zum Zitat Wu Z, Luo G, Yang Z, Guo Y, Li K, Xue Y (2022) A comprehensive review on deep learning approaches in wind forecasting applications. CAAI Trans Intell Technol 7(2):129–143CrossRef Wu Z, Luo G, Yang Z, Guo Y, Li K, Xue Y (2022) A comprehensive review on deep learning approaches in wind forecasting applications. CAAI Trans Intell Technol 7(2):129–143CrossRef
27.
Zurück zum Zitat Chen R, Pu D, Tong Y, Wu M (2022) Image-denoising algorithm based on improved K‐singular value decomposition and atom optimization. CAAI Trans Intell Technol 7(1):117–127CrossRef Chen R, Pu D, Tong Y, Wu M (2022) Image-denoising algorithm based on improved K‐singular value decomposition and atom optimization. CAAI Trans Intell Technol 7(1):117–127CrossRef
32.
Zurück zum Zitat Chen H, Yang R, Li Q, Zhao H, Liu Duanb, B., Zhuan, S. and, Chen C (2022) Sedimentary evolution of borehole PZK14 in western Tangshan area during late cenozoic. Geol Surv China 9(3):67–75 Chen H, Yang R, Li Q, Zhao H, Liu Duanb, B., Zhuan, S. and, Chen C (2022) Sedimentary evolution of borehole PZK14 in western Tangshan area during late cenozoic. Geol Surv China 9(3):67–75
Metadaten
Titel
River Ecological Protection and Restoration Using Multi-source Remote Sensing Data
verfasst von
Xiangyong Zhang
Publikationsdatum
14.07.2023
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 6/2023
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02169-9