Skip to main content
Erschienen in:

23.02.2023

RKHS-based covariate balancing for survival causal effect estimation

verfasst von: Wu Xue, Xiaoke Zhang, Kwun Chuen Gary Chan, Raymond K. W. Wong

Erschienen in: Lifetime Data Analysis | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel stellt eine bahnbrechende Methode zur Abschätzung kausaler Auswirkungen auf das Überleben in Beobachtungsstudien mittels RKHS-basierter kovariater Bilanzierung vor. Traditionelle Methoden wie die Gewichtung der Neigungswerte leiden häufig unter extremen Gewichten, die den Schätzer destabilisieren können. Die vorgeschlagene Methode löst dieses Problem, indem sie kovariate Funktionen über einen reproduzierenden Hilbert-Raum im Kern ausbalanciert, wodurch stabilere und genauere Überlebensfunktionsschätzungen gewährleistet werden. Die Methode wird durch Simulationsstudien und Anwendungen in der realen Welt validiert und demonstriert ihre überlegene Leistung im Vergleich zu bestehenden Methoden. Dieser innovative Ansatz verspricht, den Bereich der kausalen Folgerung in der Überlebensanalyse voranzutreiben und bietet eine robuste Alternative für Beobachtungsstudien.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404MathSciNet Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404MathSciNet
Zurück zum Zitat Astrakianakis G, Seixas NS, Ray R, Camp JE, Gao DL, Feng Z, Li W, Wernli KJ, Fitzgibbons ED, Thomas DB (2007) Lung cancer risk among female textile workers exposed to endotoxin. J Natl Cancer Inst 99(5):357–364 Astrakianakis G, Seixas NS, Ray R, Camp JE, Gao DL, Feng Z, Li W, Wernli KJ, Fitzgibbons ED, Thomas DB (2007) Lung cancer risk among female textile workers exposed to endotoxin. J Natl Cancer Inst 99(5):357–364
Zurück zum Zitat Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46(3):399–424 Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46(3):399–424
Zurück zum Zitat Austin PC (2013) The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med 32(16):2837–2849MathSciNet Austin PC (2013) The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med 32(16):2837–2849MathSciNet
Zurück zum Zitat Austin PC, Cafri G (2020) Variance estimation when using propensity-score matching with replacement with survival or time-to-event outcomes. Stat Med 39(11):1623–1640MathSciNet Austin PC, Cafri G (2020) Variance estimation when using propensity-score matching with replacement with survival or time-to-event outcomes. Stat Med 39(11):1623–1640MathSciNet
Zurück zum Zitat Austin PC, Schuster T (2016) The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: a simulation study. Stat Methods Med Res 25(5):2214–2237MathSciNet Austin PC, Schuster T (2016) The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: a simulation study. Stat Methods Med Res 25(5):2214–2237MathSciNet
Zurück zum Zitat Austin PC, Stuart EA (2015) Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 34(28):3661–3679MathSciNet Austin PC, Stuart EA (2015) Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 34(28):3661–3679MathSciNet
Zurück zum Zitat Austin PC, Stuart EA (2017) The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes. Stat Methods Med Res 26(4):1654–1670MathSciNet Austin PC, Stuart EA (2017) The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes. Stat Methods Med Res 26(4):1654–1670MathSciNet
Zurück zum Zitat Austin PC, Grootendorst P, Normand SLT, Anderson GM (2007) Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a monte carlo study. Stat Med 26(4):754–768MathSciNet Austin PC, Grootendorst P, Normand SLT, Anderson GM (2007) Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a monte carlo study. Stat Med 26(4):754–768MathSciNet
Zurück zum Zitat Bhat VM, Cole JW, Sorkin JD, Wozniak MA, Malarcher AM, Giles WH, Stern BJ, Kittner SJ (2008) Dose-response relationship between cigarette smoking and risk of ischemic stroke in young women. Stroke 39(9):2439–2443 Bhat VM, Cole JW, Sorkin JD, Wozniak MA, Malarcher AM, Giles WH, Stern BJ, Kittner SJ (2008) Dose-response relationship between cigarette smoking and risk of ischemic stroke in young women. Stroke 39(9):2439–2443
Zurück zum Zitat Chan KCG, Yam SCP, Zhang Z (2016) Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting. J R Stat Soc Ser B 78(3):673–700MathSciNet Chan KCG, Yam SCP, Zhang Z (2016) Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting. J R Stat Soc Ser B 78(3):673–700MathSciNet
Zurück zum Zitat Chernozhukov V, Fernández-Val I, Melly B (2013) Inference on counterfactual distributions. Econometrica 81(6):2205–2268MathSciNet Chernozhukov V, Fernández-Val I, Melly B (2013) Inference on counterfactual distributions. Econometrica 81(6):2205–2268MathSciNet
Zurück zum Zitat Cole SR, Hernán MA (2004) Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed 75(1):45–49 Cole SR, Hernán MA (2004) Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed 75(1):45–49
Zurück zum Zitat Donald SG, Hsu YC (2014) Estimation and inference for distribution functions and quantile functions in treatment effect models. J Econ 178:383–397MathSciNet Donald SG, Hsu YC (2014) Estimation and inference for distribution functions and quantile functions in treatment effect models. J Econ 178:383–397MathSciNet
Zurück zum Zitat Foldes A, Rejto L (1981) Strong uniform consistency for nonparametric survival curve estimators from randomly censored data. Ann Stat 9(1):122–129MathSciNet Foldes A, Rejto L (1981) Strong uniform consistency for nonparametric survival curve estimators from randomly censored data. Ann Stat 9(1):122–129MathSciNet
Zurück zum Zitat Fong C, Hazlett C, Imai K (2018) Covariate balancing propensity score for a continuous treatment: application to the efficacy of political advertisements. Ann Appl Stat 12(1):156–177MathSciNet Fong C, Hazlett C, Imai K (2018) Covariate balancing propensity score for a continuous treatment: application to the efficacy of political advertisements. Ann Appl Stat 12(1):156–177MathSciNet
Zurück zum Zitat Gallagher LG, Rosenblatt KA, Ray RM, Li W, Gao DL, Applebaum KM, Checkoway H, Thomas DB (2013) Reproductive factors and risk of lung cancer in female textile workers in Shanghai, China. Cancer Causes Control 24(7):1305–1314 Gallagher LG, Rosenblatt KA, Ray RM, Li W, Gao DL, Applebaum KM, Checkoway H, Thomas DB (2013) Reproductive factors and risk of lung cancer in female textile workers in Shanghai, China. Cancer Causes Control 24(7):1305–1314
Zurück zum Zitat Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology 1999:37–48 Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology 1999:37–48
Zurück zum Zitat Gretton A, Herbrich R, Smola A, Bousquet O, Schölkopf B (2005) Kernel methods for measuring independence. J Mach Learn Res 6:2075–2129MathSciNet Gretton A, Herbrich R, Smola A, Bousquet O, Schölkopf B (2005) Kernel methods for measuring independence. J Mach Learn Res 6:2075–2129MathSciNet
Zurück zum Zitat Gu C (2013) Smoothing spline ANOVA models, 2nd edn. Springer, New York Gu C (2013) Smoothing spline ANOVA models, 2nd edn. Springer, New York
Zurück zum Zitat Guyot P, Ades A, Ouwens MJ, Welton NJ (2012) Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan–Meier survival curves. BMC Med Res Methodol 12(1):1–13 Guyot P, Ades A, Ouwens MJ, Welton NJ (2012) Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan–Meier survival curves. BMC Med Res Methodol 12(1):1–13
Zurück zum Zitat Hirshberg DA, Wager S (2021) Augmented minimax linear estimation. Ann Stat 49(6):3206–3227MathSciNet Hirshberg DA, Wager S (2021) Augmented minimax linear estimation. Ann Stat 49(6):3206–3227MathSciNet
Zurück zum Zitat Hu L, Gu C, Lopez M, Ji J, Wisnivesky J (2020) Estimation of causal effects of multiple treatments in observational studies with a binary outcome. Stat Methods Med Res 29(11):3218–3234MathSciNet Hu L, Gu C, Lopez M, Ji J, Wisnivesky J (2020) Estimation of causal effects of multiple treatments in observational studies with a binary outcome. Stat Methods Med Res 29(11):3218–3234MathSciNet
Zurück zum Zitat Hu L, Ji J, Li F (2021) Estimating heterogeneous survival treatment effect in observational data using machine learning. Stat Med 40(21):4691–4713MathSciNet Hu L, Ji J, Li F (2021) Estimating heterogeneous survival treatment effect in observational data using machine learning. Stat Med 40(21):4691–4713MathSciNet
Zurück zum Zitat Huang R, Xu R, Dulai PS (2020) Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes. Stat Med 39(24):3397–3411MathSciNet Huang R, Xu R, Dulai PS (2020) Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes. Stat Med 39(24):3397–3411MathSciNet
Zurück zum Zitat Imai K, Ratkovic M (2014) Covariate balancing propensity score. J R Stat Soc Ser B 76(1):243–263MathSciNet Imai K, Ratkovic M (2014) Covariate balancing propensity score. J R Stat Soc Ser B 76(1):243–263MathSciNet
Zurück zum Zitat Jørgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Støier M, Olsen TS (1995) Outcome and time course of recovery in stroke. Part i: outcome the copenhagen stroke study. Arch Phys Med Rehab 76(5):399–405 Jørgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Støier M, Olsen TS (1995) Outcome and time course of recovery in stroke. Part i: outcome the copenhagen stroke study. Arch Phys Med Rehab 76(5):399–405
Zurück zum Zitat Kang JDY, Schafer JL (2007) Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci 22(4):523–539MathSciNet Kang JDY, Schafer JL (2007) Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci 22(4):523–539MathSciNet
Zurück zum Zitat Khedher SB, Neri M, Guida F, Matrat M, Cenée S, Sanchez M, Menvielle G, Molinié F, Luce D, Stücker I (2017) Occupational exposure to endotoxins and lung cancer risk: results of the icare study. Occup Environ Med 74(9):667–679 Khedher SB, Neri M, Guida F, Matrat M, Cenée S, Sanchez M, Menvielle G, Molinié F, Luce D, Stücker I (2017) Occupational exposure to endotoxins and lung cancer risk: results of the icare study. Occup Environ Med 74(9):667–679
Zurück zum Zitat Kimura K, Minematsu K, Kazui S, Yamaguchi T (2005) Mortality and cause of death after hospital discharge in 10,981 patients with ischemic stroke and transient ischemic attack. Cerebrovasc Dis 19(3):171–178 Kimura K, Minematsu K, Kazui S, Yamaguchi T (2005) Mortality and cause of death after hospital discharge in 10,981 patients with ischemic stroke and transient ischemic attack. Cerebrovasc Dis 19(3):171–178
Zurück zum Zitat Lee BK, Lessler J, Stuart EA (2010) Improving propensity score weighting using machine learning. Stat Med 29(3):337–346MathSciNet Lee BK, Lessler J, Stuart EA (2010) Improving propensity score weighting using machine learning. Stat Med 29(3):337–346MathSciNet
Zurück zum Zitat Lenters V, Basinas I, Beane-Freeman L, Boffetta P, Checkoway H, Coggon D, Portengen L, Sim M, Wouters IM, Heederik D et al (2010) Endotoxin exposure and lung cancer risk: a systematic review and meta-analysis of the published literature on agriculture and cotton textile workers. Cancer Causes Control 21(4):523–555 Lenters V, Basinas I, Beane-Freeman L, Boffetta P, Checkoway H, Coggon D, Portengen L, Sim M, Wouters IM, Heederik D et al (2010) Endotoxin exposure and lung cancer risk: a systematic review and meta-analysis of the published literature on agriculture and cotton textile workers. Cancer Causes Control 21(4):523–555
Zurück zum Zitat Levine DA, Walter JM, Karve SJ, Skolarus LE, Levine SR, Mulhorn KA (2014) Smoking and mortality in stroke survivors: can we eliminate the paradox? J Stroke Cerebrovasc Dis 23(6):1282–1290 Levine DA, Walter JM, Karve SJ, Skolarus LE, Levine SR, Mulhorn KA (2014) Smoking and mortality in stroke survivors: can we eliminate the paradox? J Stroke Cerebrovasc Dis 23(6):1282–1290
Zurück zum Zitat Liebers V, Brüning T, Raulf M (2020) Occupational endotoxin exposure and health effects. Arch Toxicol 94(11):3629–3644 Liebers V, Brüning T, Raulf M (2020) Occupational endotoxin exposure and health effects. Arch Toxicol 94(11):3629–3644
Zurück zum Zitat Linden A, Yarnold PR (2017) Using classification tree analysis to generate propensity score weights. J Eval Clin Pract 23(4):703–712 Linden A, Yarnold PR (2017) Using classification tree analysis to generate propensity score weights. J Eval Clin Pract 23(4):703–712
Zurück zum Zitat Makuch RW (1982) Adjusted survival curve estimation using covariates. J Chronic Dis 35(6):437–443 Makuch RW (1982) Adjusted survival curve estimation using covariates. J Chronic Dis 35(6):437–443
Zurück zum Zitat Mao H, Li L, Yang W, Shen Y (2018) On the propensity score weighting analysis with survival outcome: estimands, estimation, and inference. Stat Med 37(26):3745–3763MathSciNet Mao H, Li L, Yang W, Shen Y (2018) On the propensity score weighting analysis with survival outcome: estimands, estimation, and inference. Stat Med 37(26):3745–3763MathSciNet
Zurück zum Zitat Ni A, Lin Z, Lu B (2021) Stratified restricted mean survival time model for marginal causal effect in observational survival data. Ann Epidemiol 64:149–154 Ni A, Lin Z, Lu B (2021) Stratified restricted mean survival time model for marginal causal effect in observational survival data. Ann Epidemiol 64:149–154
Zurück zum Zitat Ouwens MJ, Philips Z, Jansen JP (2010) Network meta-analysis of parametric survival curves. Res Synth Methods 1(3–4):258–271 Ouwens MJ, Philips Z, Jansen JP (2010) Network meta-analysis of parametric survival curves. Res Synth Methods 1(3–4):258–271
Zurück zum Zitat Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55MathSciNet Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55MathSciNet
Zurück zum Zitat Rubin DB (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66(5):688–701 Rubin DB (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66(5):688–701
Zurück zum Zitat Stitelman OM, Wester CW, De Gruttola V, van der Laan MJ (2011) Targeted maximum likelihood estimation of effect modification parameters in survival analysis. Int J Biostat 7(1) Stitelman OM, Wester CW, De Gruttola V, van der Laan MJ (2011) Targeted maximum likelihood estimation of effect modification parameters in survival analysis. Int J Biostat 7(1)
Zurück zum Zitat Tang S, Yang S, Wang T, Cui Z, Li L, Faries DE (2019) Causal inference of hazard ratio based on propensity score matching. arXiv preprint arXiv:1911.12430 Tang S, Yang S, Wang T, Cui Z, Li L, Faries DE (2019) Causal inference of hazard ratio based on propensity score matching. arXiv preprint arXiv:​1911.​12430
Zurück zum Zitat Wahba G (1990) Spline models for observational data. SIAM, Philadelphia Wahba G (1990) Spline models for observational data. SIAM, Philadelphia
Zurück zum Zitat Wang J, Wong RK, Yang S, Chan KCG (2021) Estimation of partially conditional average treatment effect by hybrid kernel-covariate balancing. arXiv preprint arXiv:2103.03437 Wang J, Wong RK, Yang S, Chan KCG (2021) Estimation of partially conditional average treatment effect by hybrid kernel-covariate balancing. arXiv preprint arXiv:​2103.​03437
Zurück zum Zitat Wang Y, Zubizarreta JR (2020) Minimal dispersion approximately balancing weights: asymptotic properties and practical considerations. Biometrika 107(1):93–105MathSciNet Wang Y, Zubizarreta JR (2020) Minimal dispersion approximately balancing weights: asymptotic properties and practical considerations. Biometrika 107(1):93–105MathSciNet
Zurück zum Zitat Wen L, Young JG, Robins JM, Hernán MA (2021) Parametric g-formula implementations for causal survival analyses. Biometrics 77(2):740–753MathSciNet Wen L, Young JG, Robins JM, Hernán MA (2021) Parametric g-formula implementations for causal survival analyses. Biometrics 77(2):740–753MathSciNet
Zurück zum Zitat Westreich D, Lessler J, Funk MJ (2010) Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol 63(8):826–833 Westreich D, Lessler J, Funk MJ (2010) Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol 63(8):826–833
Zurück zum Zitat Williamson PR, Smith CT, Hutton JL, Marson AG (2002) Aggregate data meta-analysis with time-to-event outcomes. Stat Med 21(22):3337–3351 Williamson PR, Smith CT, Hutton JL, Marson AG (2002) Aggregate data meta-analysis with time-to-event outcomes. Stat Med 21(22):3337–3351
Zurück zum Zitat Wolf PA, D’Agostino RB, Kannel WB, Bonita R, Belanger AJ (1988) Cigarette smoking as a risk factor for stroke: the framingham study. JAMA 259(7):1025–1029 Wolf PA, D’Agostino RB, Kannel WB, Bonita R, Belanger AJ (1988) Cigarette smoking as a risk factor for stroke: the framingham study. JAMA 259(7):1025–1029
Zurück zum Zitat Wong RKW, Chan KCG (2018) Kernel-based covariate functional balancing for observational studies. Biometrika 105(1):199–213MathSciNet Wong RKW, Chan KCG (2018) Kernel-based covariate functional balancing for observational studies. Biometrika 105(1):199–213MathSciNet
Zurück zum Zitat Xie J, Liu C (2005) Adjusted Kaplan–Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med 24(20):3089–3110MathSciNet Xie J, Liu C (2005) Adjusted Kaplan–Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med 24(20):3089–3110MathSciNet
Zurück zum Zitat Zhang X, Xue W, Wang Q (2021) Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies. Comput Stat Data Anal 163:107303MathSciNet Zhang X, Xue W, Wang Q (2021) Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies. Comput Stat Data Anal 163:107303MathSciNet
Zurück zum Zitat Zhao P, Su X, Ge T, Fan J (2016) Propensity score and proximity matching using random forest. Contemp Clin Trials 47:85–92 Zhao P, Su X, Ge T, Fan J (2016) Propensity score and proximity matching using random forest. Contemp Clin Trials 47:85–92
Zurück zum Zitat Zhao Q (2019) Covariate balancing propensity score by tailored loss functions. Ann Stat 47(2):965–993MathSciNet Zhao Q (2019) Covariate balancing propensity score by tailored loss functions. Ann Stat 47(2):965–993MathSciNet
Zurück zum Zitat Zubizarreta JR (2015) Stable weights that balance covariates for estimation with incomplete outcome data. J Am Stat Assoc 110(511):910–922MathSciNet Zubizarreta JR (2015) Stable weights that balance covariates for estimation with incomplete outcome data. J Am Stat Assoc 110(511):910–922MathSciNet
Metadaten
Titel
RKHS-based covariate balancing for survival causal effect estimation
verfasst von
Wu Xue
Xiaoke Zhang
Kwun Chuen Gary Chan
Raymond K. W. Wong
Publikationsdatum
23.02.2023
Verlag
Springer US
Erschienen in
Lifetime Data Analysis / Ausgabe 1/2024
Print ISSN: 1380-7870
Elektronische ISSN: 1572-9249
DOI
https://doi.org/10.1007/s10985-023-09590-y

Premium Partner