Skip to main content
main-content

06.02.2019 | Robotik | Interview | Onlineartikel

"Neue Lernstrategien für Roboter"

Autor:
Paul Hellmich

Gordon Cheng ist der Ansicht, dass Roboter den Zweck der Handlungen von Menschen verstehen sollten, um besser mit ihnen kooperieren zu können. Wie das gehen soll, erklärt er im Interview.


Springer Professional: In einem aktuellen Artikel in "Science Robotics" vertreten Sie die Ansicht, dass Roboter den Zweck der Handlungen von Menschen verstehen sollten, um von ihnen zu lernen. Anders als bisherige Ansätze mache zweckbewusstes Lernen (purposive learning) Roboter flexibler und besser geeignet für direkte Kooperationen mit Menschen. Was genau meinen sie mit zweckbewusstem Lernen?

Gordon Cheng: Menschen und Tiere wenden drei Grundstrategien an, wenn sie andere imitieren und dabei von ihnen lernen. Der erste Ansatz ist erscheinungsbasiert. Das bedeutet, dass wir versuchen, Bewegungen – wie sie uns erscheinen – exakt nachzuahmen. Die zweite Strategie ist aktionsbasiert, man konzentriert sich also darauf, zu lernen, welche Aktionen zu auszuführen sind. Zweckbewusstes Lernen ist der dritte Ansatz, darunter verstehen wir, dass man den Zweck einer Handlung begreift. Das macht es nicht nur einfacher, von anderen zu lernen, sondern macht uns auch flexibler beim Ausführen der Handlungen.

Was wäre ein Beispiel dafür?

Beim Abwaschen ist beispielsweise unser Ziel, am Ende saubere Teller und Tassen zu haben. Wir können uns problemlos an unterschiedlich eingerichtete Küchen, an verschiedene Bürsten und Schwämme und an eine Vielfalt an Geschirr und Besteck anpassen. Den Zweck einer Handlung zu kennen, macht uns extrem effektiv.

Empfehlung der Redaktion

2017 | OriginalPaper | Buchkapitel

Mensch-Maschine-Interaktion

Roboter sind per Definition in ISO 8373 [1] universelle Betriebsmittel. Durch diese universelle Einsetzbarkeit und die Notwendigkeit, den Roboter und seine Peripheriekomponenten für eine konkrete Fertigungsaufgabe zu konfigurieren, finden sich in …


Wie lässt sich das auf Roboter anwenden?

Will man einem Roboter eine Aufgabe beibringen, ist es sinnlos, erscheinungsbasiert zu arbeiten, ihn also einen Menschen direkt imitieren zu lassen. Schon der Körper der meisten Roboter ist ja ganz anders geformt, als unserer. Würde man die Bewegungen eines Menschen beim Abwaschen eins zu eins auf einen Roboter übertragen, hätte man am Ende vermutlich einen zerbrochenen Teller. Würde man dagegen aktionsbasiert arbeiten und die einzelnen Bewegungen des Roboters programmieren, könnte er einen Teller effektiv abwaschen. Reicht man ihm aber eine Tasse oder nur einen Teller in einer anderen Größe, wird er scheitern.

Wie könnte ein zweckbasierter Ansatz hier weiterhelfen?

Idealerweise sagen wir einem Roboter nur, dass er den Abwasch machen soll und er erledigt diese Aufgabe ohne weiteren Programmierbedarf. Die Grundidee ist, ihm Wissen zu vermitteln und die Fähigkeit zu geben, anhand dieses Wissens eigenständig Schlussfolgerungen zu ziehen. In unserem Abwasch-Szenario hätte der Roboter eine generelle Vorstellung von "Geschirr" und davon, was "sauber" bedeutet und wüsste, welche Handgriffe nötig sind, um sauberes Geschirr zu erhalten. Dieser Roboter weiß, dass sowohl eine Tasse als auch ein Teller Objekte sind, die gereinigt werden können. Und er kann seine Abwasch-Strategie entsprechend anpassen.

Wie vermittelt man einem Roboter dieses Wissen?

Eines der Werkzeuge, das wir dazu nutzen ist ein Netzwerk von Ontologien. Die Welt, wie wir sie wahrnehmen, lässt sich in solchen Ontologien ausdrücken, in Beziehungen zwischen Objekten und unseren Aktionen. Wir können für jedes Objekt mögliche und wahrscheinliche Aktionen nennen. Das beginnt mit unserem eigenen Körper. Wir wissen, welche Aktionen unser Arm ausführen kann, unsere rechte Hand, jedes einzelne Glied unserer Finger. Das Gleiche gilt für andere Objekte, zum Beispiel einen Spülschwamm: Sie werden ihn nicht verwenden, um eine Wurst zu schneiden. Vielmehr haben Sie eine mentale Ontologie entwickelt, die Ihnen verrät, dass man einen Schwamm nass machen kann und ihn über eine Oberfläche reiben kann. Ontologien, die wir mit anderen teilen, machen es sehr einfach, Aktionen zu erklären.

Aber wie erklären Sie das einer Maschine? Setzen Sie sich an den Rechner und erstellen Sie gigantische Beziehungs-Datenbanken?

Ein Ansatz ist es, eine große Zahl an Menschen bei einer Aufgabe zu beobachten und ihre Handlungen zu analysieren. Wir nutzen tatsächlich Abwaschen als eine Möglichkeit, um Wissen zu generieren. Wir haben eine Küche mit Spüle in einer Virtual-Reality-Umgebung erstellt und lassen viele verschiedene Menschen mit ihren unterschiedlichen Körpern und Abwasch-Techniken virtuelles Geschirr spülen. Durch spezielle Software ist es möglich, ihre Handlungen in eine Aneinanderreihung von Aktionen zu unterteilen und verwertbare Daten zu generieren.

Müssen Sie das für jede neue Aufgabe von vorne machen?

Nein, sobald man eine Beziehungs-Datenbank erstellt hat, kann man sie auch für andere Aufgaben nutzen. Wissenschaftlerinnen und Wissenschaftler erstellen solche "Common Sense"-Datensammlungen schon seit einiger Zeit. In vielen Fällen existiert schon eine Datenbank für die Grundlangen, auf der man aufbauen kann.

Gibt es noch andere Einsatzmöglichkeiten außer Robotern Haushaltstätigkeiten beizubringen?

Die Möglichkeit, menschliche Handlungen auseinanderzunehmen und Maschinen beizubringen, ihren Zweck zu erkennen, eröffnet viele neue Möglichkeiten. Ein Thema, das in Zukunft interessant werden könnte, ist Mensch-Roboter-Kooperation in der Industrie. Sobald eine Maschine versteht, was ein Mensch tut und welches seine nächste Handlung sein wird – oder sein sollte – kann sie viel effektiver Unterstützung leisten. 

Weiterführende Themen

Die Hintergründe zu diesem Inhalt

Das könnte Sie auch interessieren

22.11.2018 | Robotik | Infografik | Onlineartikel

Cobots sind willkommen

07.03.2018 | Künstliche Intelligenz | Im Fokus | Onlineartikel

Die Menschmaschine von nebenan

28.03.2017 | Robotik | Im Fokus | Onlineartikel

Mit Bionik zur sicheren Mensch-Maschine-Interaktion

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Grundlagen zu 3D-Druck, Produktionssystemen und Lean Production

Lesen Sie in diesem ausgewählten Buchkapitel alles über den 3D-Druck im Hinblick auf Begriffe, Funktionsweise, Anwendungsbereiche sowie Nutzen und Grenzen additiver Fertigungsverfahren. Eigenschaften eines schlanken Produktionssystems sowie der Aspekt der „Schlankheit“ werden ebenso beleuchtet wie die Prinzipien und Methoden der Lean Production.
Jetzt gratis downloaden!

Marktübersichten

Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

Bildnachweise