Skip to main content
Erschienen in:

16.06.2024 | Short Paper

Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction

verfasst von: Jieke Zhang, Zhi Zheng, Cheng Wang

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The performance of adaptive beamforming will deteriorate severely under small sample support, especially when the number of snapshots is smaller than the number of sensors. In this paper, we propose an effective algorithm for robust adaptive beamforming under small sample. Firstly, we utilize standard Guassian random matrices to construct projection matrices for dimension reduction of sample covariance matrix (SCM) and steering vector (SV). Subsequently, the dimensionality-reduced SCM and SV are used to obtain more accurate Capon power spectrum in the case of small sample. By integrating the corresponding Capon power spectrum over the angular sector without desired signal, the interference-plus-noise covariance matrix (INCM) is then reconstructed. Moreover, the SV of desired signal is estimated by solving a quadratic programming problem. Finally, the weight vector of the beamformer is calculated based on the reconstructed INCM and the estimated SV. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat O. Besson, Adaptive detection using randomly reduced dimension generalized likelihood ratio test. Signal Process. 166, 107265 (2020)CrossRef O. Besson, Adaptive detection using randomly reduced dimension generalized likelihood ratio test. Signal Process. 166, 107265 (2020)CrossRef
2.
Zurück zum Zitat B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 24(4), 397–401 (1988)CrossRef B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 24(4), 397–401 (1988)CrossRef
3.
Zurück zum Zitat L. Chang, C.-C. Yeh, Performance of DMI and eigenspace-based beamformers. IEEE Trans. Antennas Propag. 40(11), 1336–1347 (1992)CrossRef L. Chang, C.-C. Yeh, Performance of DMI and eigenspace-based beamformers. IEEE Trans. Antennas Propag. 40(11), 1336–1347 (1992)CrossRef
4.
Zurück zum Zitat R. Couillet, M. Debbah, Random Matrix Methods for Wireless Communications (Cambridge University Press, Cambridge, 2011)CrossRef R. Couillet, M. Debbah, Random Matrix Methods for Wireless Communications (Cambridge University Press, Cambridge, 2011)CrossRef
5.
Zurück zum Zitat L. Du, J. Li, P. Stoica, Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans. Aerosp. Electron. Syst. 46(1), 449–458 (2010)CrossRef L. Du, J. Li, P. Stoica, Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans. Aerosp. Electron. Syst. 46(1), 449–458 (2010)CrossRef
6.
Zurück zum Zitat A.B. Gershman, N.D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming: from receive to transmit and network designs. IEEE Signal Process. Mag. 27(3), 62–75 (2010)CrossRef A.B. Gershman, N.D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, B. Ottersten, Convex optimization-based beamforming: from receive to transmit and network designs. IEEE Signal Process. Mag. 27(3), 62–75 (2010)CrossRef
7.
Zurück zum Zitat M. Grant, S. Boyd, Y. Ye, CVX: Matlab software for disciplined convex programming, version 2.1, June 2015 (online) M. Grant, S. Boyd, Y. Ye, CVX: Matlab software for disciplined convex programming, version 2.1, June 2015 (online)
8.
Zurück zum Zitat Y. Gu, A. Leshem, Robust adaptive beamforming based on jointly estimating covariance matrix and steering vector, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 2640–2643 (2011) Y. Gu, A. Leshem, Robust adaptive beamforming based on jointly estimating covariance matrix and steering vector, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 2640–2643 (2011)
9.
Zurück zum Zitat Y. Gu, A. Leshem, Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 60(7), 3881–3885 (2012)MathSciNetCrossRef Y. Gu, A. Leshem, Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 60(7), 3881–3885 (2012)MathSciNetCrossRef
10.
Zurück zum Zitat F. Huang, W. Sheng, X. Ma, Modified projection approach for robust adaptive array beamforming. Signal Process. 92(7), 1758–1763 (2012)CrossRef F. Huang, W. Sheng, X. Ma, Modified projection approach for robust adaptive array beamforming. Signal Process. 92(7), 1758–1763 (2012)CrossRef
11.
Zurück zum Zitat L. Huang, J. Zhang, X. Xu, Z. Ye, Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method. IEEE Trans. Signal Process. 63(7), 1643–1650 (2015)MathSciNetCrossRef L. Huang, J. Zhang, X. Xu, Z. Ye, Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method. IEEE Trans. Signal Process. 63(7), 1643–1650 (2015)MathSciNetCrossRef
12.
Zurück zum Zitat O. Ledoit, M. Wolf, Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Stat. 30(4), 1081–1102 (2002)MathSciNetCrossRef O. Ledoit, M. Wolf, Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Stat. 30(4), 1081–1102 (2002)MathSciNetCrossRef
13.
Zurück zum Zitat J. Li, P. Stoica, Robust Adaptive Beamforming (Wiley, New York, 2005)CrossRef J. Li, P. Stoica, Robust Adaptive Beamforming (Wiley, New York, 2005)CrossRef
14.
Zurück zum Zitat T.L. Marzetta, S.H. Simon, H. Ren, Capon-MVDR spectral estimation from singular data covariance matrix, with no diagonal loading, in Proceedings of the 14th Annual Workshop ASAP, MIT Lincoln Laboratory, pp. 1–6 (2006) T.L. Marzetta, S.H. Simon, H. Ren, Capon-MVDR spectral estimation from singular data covariance matrix, with no diagonal loading, in Proceedings of the 14th Annual Workshop ASAP, MIT Lincoln Laboratory, pp. 1–6 (2006)
15.
Zurück zum Zitat T.L. Marzetta, G.H. Tucci, S.H. Simon, A random matrix-theoretic approach to handling singular covariance estimates. IEEE Trans. Inf. Theory 57(9), 6256–6271 (2011)MathSciNetCrossRef T.L. Marzetta, G.H. Tucci, S.H. Simon, A random matrix-theoretic approach to handling singular covariance estimates. IEEE Trans. Inf. Theory 57(9), 6256–6271 (2011)MathSciNetCrossRef
16.
Zurück zum Zitat X. Mestre, M.A. Lagunas, Finite sample size effect on minimum variance beamformers: optimum diagonal loading factor for large arrays. IEEE Trans. Signal Process. 54(1), 69–82 (2005)CrossRef X. Mestre, M.A. Lagunas, Finite sample size effect on minimum variance beamformers: optimum diagonal loading factor for large arrays. IEEE Trans. Signal Process. 54(1), 69–82 (2005)CrossRef
17.
Zurück zum Zitat F. Shen, F. Chen, J. Song, Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction. IEEE Commun. Lett. 19(9), 1636–1639 (2015)CrossRef F. Shen, F. Chen, J. Song, Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction. IEEE Commun. Lett. 19(9), 1636–1639 (2015)CrossRef
18.
Zurück zum Zitat S.A. Vorobyov, Principles of minimum variance robust adaptive beamforming design. Signal Process. 93(12), 3264–3277 (2013)CrossRef S.A. Vorobyov, Principles of minimum variance robust adaptive beamforming design. Signal Process. 93(12), 3264–3277 (2013)CrossRef
19.
Zurück zum Zitat L. Yang, M.R. McKay, R. Couillet, High-dimensional MVDR beamforming: optimized solutions based on spiked random matrix models. IEEE Trans. Signal Process. 66(7), 1933–1947 (2018)MathSciNetCrossRef L. Yang, M.R. McKay, R. Couillet, High-dimensional MVDR beamforming: optimized solutions based on spiked random matrix models. IEEE Trans. Signal Process. 66(7), 1933–1947 (2018)MathSciNetCrossRef
20.
Zurück zum Zitat H. Yang, P. Wang, Z. Ye, Robust adaptive beamforming via covariance matrix reconstruction and interference power estimation. IEEE Commun. Lett. 25(10), 3394–3397 (2021)CrossRef H. Yang, P. Wang, Z. Ye, Robust adaptive beamforming via covariance matrix reconstruction and interference power estimation. IEEE Commun. Lett. 25(10), 3394–3397 (2021)CrossRef
21.
Zurück zum Zitat H. Zheng, C. Zhou, Z. Shi, G. Liao, Sub-Nyquist tensor beamformer: a coprimality constrained design. IEEE Trans. Signal Process. 71, 4163–4177 (2023)MathSciNetCrossRef H. Zheng, C. Zhou, Z. Shi, G. Liao, Sub-Nyquist tensor beamformer: a coprimality constrained design. IEEE Trans. Signal Process. 71, 4163–4177 (2023)MathSciNetCrossRef
22.
Zurück zum Zitat C. Zhou, Y. Gu, S. He, Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)CrossRef C. Zhou, Y. Gu, S. He, Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)CrossRef
23.
Zurück zum Zitat X. Zhu, X. Xu, Z. Ye, Robust adaptive beamforming via subspace for interference covariance matrix reconstruction. Signal Process. 167, 107289 (2020)CrossRef X. Zhu, X. Xu, Z. Ye, Robust adaptive beamforming via subspace for interference covariance matrix reconstruction. Signal Process. 167, 107289 (2020)CrossRef
Metadaten
Titel
Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction with Gaussian Random Dimensionality Reduction
verfasst von
Jieke Zhang
Zhi Zheng
Cheng Wang
Publikationsdatum
16.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02742-x