Skip to main content

2017 | OriginalPaper | Buchkapitel

Robust Adaptive Interval Type-2 Fuzzy Synchronization for a Class of Fractional Order Chaotic Systems

verfasst von : Khatir Khettab, Yassine Bensafia, Samir Ladaci

Erschienen in: Fractional Order Control and Synchronization of Chaotic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a novel Robust Adaptive Interval Type-2 Fuzzy Logic Controller (RAIT2FLC) equipped with an adaptive algorithm to achieve synchronization performance for fractional order chaotic systems. In this work, by incorporating the \( H^{\infty } \) tracking design technique and Lyapunov stability criterion, a new adaptive fuzzy control algorithm is proposed so that not only the stability of the adaptive type-2 fuzzy control system is guaranteed but also the influence of the approximation error and external disturbance on the tracking error can be attenuated to an arbitrarily prescribed level via the H tracking design technique. The main contribution in this work is the use of the interval type-2 fuzzy logic controller and the numerical approximation method of Grünwald-Letnikov in order to improve the control and synchronization performance comparatively to existing results. By introducing the type-2 fuzzy control design and robustness tracking approach, the synchronization error can be attenuated to a prescribed level, even in the presence of high level uncertainties and noisy training data. A simulation example on chaos synchronization of two fractional order Duffing systems is given to verify the robustness of the proposed AIT2FLC approach in the presence of uncertainties and bounded external disturbances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aguila-Camacho, N., Duarte-Mermoud, M. A., & Delgado-Aguilera, E. (2016). Adaptive synchronization of fractional Lorenz systems using a re duce d number of control signals and parameters. Chaos, Solitons and Fractals, 87, 1–11.MathSciNetCrossRefMATH Aguila-Camacho, N., Duarte-Mermoud, M. A., & Delgado-Aguilera, E. (2016). Adaptive synchronization of fractional Lorenz systems using a re duce d number of control signals and parameters. Chaos, Solitons and Fractals, 87, 1–11.MathSciNetCrossRefMATH
2.
Zurück zum Zitat Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1997). Chaos in a fractional order Duffing system. In: Proceedings ECCTD (pp. 1259–1262). Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1997). Chaos in a fractional order Duffing system. In: Proceedings ECCTD (pp. 1259–1262).
3.
Zurück zum Zitat Azar, A. T. (2010). Adaptive neuro-fuzzy systems. In: A. T. Azar (ed.), Fuzzy Systems. IN-TECH, Vienna, Austria. ISBN 978-953-7619-92-3. Azar, A. T. (2010). Adaptive neuro-fuzzy systems. In: A. T. Azar (ed.), Fuzzy Systems. IN-TECH, Vienna, Austria. ISBN 978-953-7619-92-3.
4.
Zurück zum Zitat Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications (IJFSA), 2(4), 1–28.CrossRef Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications (IJFSA), 2(4), 1–28.CrossRef
5.
Zurück zum Zitat Azar, A. T., Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Germany: Springer. ISBN 978-3-319-13131-3. Azar, A. T., Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Germany: Springer. ISBN 978-3-319-13131-3.
6.
Zurück zum Zitat Azar, A. T., Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3. Azar, A. T., Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3.
7.
Zurück zum Zitat Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
8.
Zurück zum Zitat Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
9.
Zurück zum Zitat Castillo, O., & Melin, P. (2008). Type-2 fuzzy logic: Theory and applications. Heidelberg: Springer.MATH Castillo, O., & Melin, P. (2008). Type-2 fuzzy logic: Theory and applications. Heidelberg: Springer.MATH
11.
Zurück zum Zitat Castro, J. L. (1995). Fuzzy logical controllers are universal approximators. IEEE Transactions on Systems, Man and Cybernetics, 25, 629–635.CrossRef Castro, J. L. (1995). Fuzzy logical controllers are universal approximators. IEEE Transactions on Systems, Man and Cybernetics, 25, 629–635.CrossRef
12.
Zurück zum Zitat Cazarez-Castro, N. R., Aguilar, L. T., & Castillo, O. (2012). Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for non-smooth mechanical systems. Engineering Applications of Artificial Intelligence, 25(5), 971–979.CrossRef Cazarez-Castro, N. R., Aguilar, L. T., & Castillo, O. (2012). Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for non-smooth mechanical systems. Engineering Applications of Artificial Intelligence, 25(5), 971–979.CrossRef
13.
Zurück zum Zitat Chen, Y., Wei, Y., Liang, S., & Wang, Y. (2016). Indirect model reference adaptive control for a class of fractional order systems. Communications in Nonlinear Science and Numerical Simulation. Chen, Y., Wei, Y., Liang, S., & Wang, Y. (2016). Indirect model reference adaptive control for a class of fractional order systems. Communications in Nonlinear Science and Numerical Simulation.
14.
Zurück zum Zitat Diethlem, K. (2003). Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing, 71, 305–319.MathSciNetCrossRef Diethlem, K. (2003). Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing, 71, 305–319.MathSciNetCrossRef
15.
Zurück zum Zitat Efe, M. O. (2008). Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 38(6), 1561–1570.CrossRef Efe, M. O. (2008). Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 38(6), 1561–1570.CrossRef
16.
Zurück zum Zitat Ge, Z.-M., & Ou, C.-Y. (2008). Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos, Solitons and Fractals, 35(4), 705–717.CrossRef Ge, Z.-M., & Ou, C.-Y. (2008). Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos, Solitons and Fractals, 35(4), 705–717.CrossRef
17.
Zurück zum Zitat Ghaemi, M., & Akbarzadeh T. M. R. (2011). Optimal design of adaptive interval type-2 fuzzy sliding mode control using genetic algorithm. In Proceedings of the 2nd International Conference on Control, Instrumentation, and Automation, Shiraz, Iran (pp. 626–631). Ghaemi, M., & Akbarzadeh T. M. R. (2011). Optimal design of adaptive interval type-2 fuzzy sliding mode control using genetic algorithm. In Proceedings of the 2nd International Conference on Control, Instrumentation, and Automation, Shiraz, Iran (pp. 626–631).
18.
Zurück zum Zitat Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos on a fractional Chua’s system. IEEE Transactions on Circuits and Systems Theory and Applications, 42(8), 485–490. Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos on a fractional Chua’s system. IEEE Transactions on Circuits and Systems Theory and Applications, 42(8), 485–490.
19.
Zurück zum Zitat Hilfer, R. (2001). Applications of fractional calculus in physics. New Jersey: World Scientific.MATH Hilfer, R. (2001). Applications of fractional calculus in physics. New Jersey: World Scientific.MATH
20.
Zurück zum Zitat Karnik, N. N., & Mendel, J. M. (1998). Type-2 fuzzy logic systems: Type-reduction. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA (pp. 2046–2051). Karnik, N. N., & Mendel, J. M. (1998). Type-2 fuzzy logic systems: Type-reduction. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA (pp. 2046–2051).
21.
Zurück zum Zitat Karnik, N. N., Mendel, J. M., & Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7, 643–658.CrossRef Karnik, N. N., Mendel, J. M., & Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7, 643–658.CrossRef
22.
Zurück zum Zitat Khettab, K., Bensafia, Y., & Ladaci, S. (2014). Robust adaptive fuzzy control for a class of uncertain nonlinear fractional systems. In Proceedings of the Second International Conference on Electrical Engineering and Control Applications ICEECA’2014, Constantine, Algeria. Khettab, K., Bensafia, Y., & Ladaci, S. (2014). Robust adaptive fuzzy control for a class of uncertain nonlinear fractional systems. In Proceedings of the Second International Conference on Electrical Engineering and Control Applications ICEECA’2014, Constantine, Algeria.
23.
Zurück zum Zitat Khettab, K., Bensafia, Y., & Ladaci, S. (2015). Fuzzy adaptive control enhancement for non-affine systems with unknown control gain sign. In Proceedings of the International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA’2015, Monastir, Tunisia (pp. 616–621). Khettab, K., Bensafia, Y., & Ladaci, S. (2015). Fuzzy adaptive control enhancement for non-affine systems with unknown control gain sign. In Proceedings of the International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA’2015, Monastir, Tunisia (pp. 616–621).
24.
Zurück zum Zitat Khettab, K., Ladaci, S., & Bensafia, Y. (2016). Fuzzy adaptive control of fractional order chaotic systems with unknown control gain sign using a fractional order Nussbaum gain. IEEE/CAA Journal of Automatica Sinica. Khettab, K., Ladaci, S., & Bensafia, Y. (2016). Fuzzy adaptive control of fractional order chaotic systems with unknown control gain sign using a fractional order Nussbaum gain. IEEE/CAA Journal of Automatica Sinica.
25.
Zurück zum Zitat Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Amsterdam: Elsevier.MATH Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Amsterdam: Elsevier.MATH
26.
Zurück zum Zitat Ladaci, S., & Charef, A. (2002). Commande adaptative à modèle de référence d’ordre fractionnaire d’un bras de robot (in French) Communication Sciences & Technologie, ENSET Oran, Algeria (Vol. 1, pp. 50–52). Ladaci, S., & Charef, A. (2002). Commande adaptative à modèle de référence d’ordre fractionnaire d’un bras de robot (in French) Communication Sciences & Technologie, ENSET Oran, Algeria (Vol. 1, pp. 50–52).
28.
Zurück zum Zitat Ladaci, S., & Charef, A. (2006). An adaptive fractional PIλDμ controller. In Proceedings of the Sixth Int. Symposium on Tools and Methods of Competitive Engineering, TMCE 2006, Ljubljana, Slovenia (1533–1540). Ladaci, S., & Charef, A. (2006). An adaptive fractional PIλDμ controller. In Proceedings of the Sixth Int. Symposium on Tools and Methods of Competitive Engineering, TMCE 2006, Ljubljana, Slovenia (1533–1540).
29.
Zurück zum Zitat Ladaci, S., Loiseau, J. J., & Charef, A. (2008). Fractional order adaptive high-gain controllers for a class of linear systems. Communications in Nonlinear Science and Numerical Simulation, 13(4), 707–714.MathSciNetCrossRefMATH Ladaci, S., Loiseau, J. J., & Charef, A. (2008). Fractional order adaptive high-gain controllers for a class of linear systems. Communications in Nonlinear Science and Numerical Simulation, 13(4), 707–714.MathSciNetCrossRefMATH
30.
Zurück zum Zitat Ladaci, S., Charef, A., & Loiseau, J. J. (2009). Robust fractional adaptive control based on the strictly positive realness condition. International Journal of Applied Mathematics and Computer Science, 19(1), 69–76.MathSciNetCrossRefMATH Ladaci, S., Charef, A., & Loiseau, J. J. (2009). Robust fractional adaptive control based on the strictly positive realness condition. International Journal of Applied Mathematics and Computer Science, 19(1), 69–76.MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ladaci, S., Loiseau, J. J., & Charef, A. (2010). Adaptive internal model control with fractional order parameter. International Journal of Adaptive Control and Signal Processing, 24, 944–960.MathSciNetCrossRefMATH Ladaci, S., Loiseau, J. J., & Charef, A. (2010). Adaptive internal model control with fractional order parameter. International Journal of Adaptive Control and Signal Processing, 24, 944–960.MathSciNetCrossRefMATH
32.
Zurück zum Zitat Ladaci, S., & Charef, A. (2012). Fractional order adaptive control systems: A survey. In E.W. Mitchell & S.R. Murray (Eds.), Classification and application of fractals (pp. 261–275). Nova Science Publishers Inc. Ladaci, S., & Charef, A. (2012). Fractional order adaptive control systems: A survey. In E.W. Mitchell & S.R. Murray (Eds.), Classification and application of fractals (pp. 261–275). Nova Science Publishers Inc.
33.
Zurück zum Zitat Ladaci, S., & Khettab, K. (2012). Fractional order multiple model adaptive control. International Journal of Automation and Systems Engineering, 6(2), 110–122. Ladaci, S., & Khettab, K. (2012). Fractional order multiple model adaptive control. International Journal of Automation and Systems Engineering, 6(2), 110–122.
34.
Zurück zum Zitat Ladaci, S., & Bensafia, Y. (2016). Indirect fractional order pole assignment based adaptive control. Engineering Science and Technology, an International Journal, 19, 518–530.CrossRef Ladaci, S., & Bensafia, Y. (2016). Indirect fractional order pole assignment based adaptive control. Engineering Science and Technology, an International Journal, 19, 518–530.CrossRef
35.
Zurück zum Zitat Lee, C.-H., & Chang, Y.-C. (1996). H ∞ Tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach. IEEE Transactions on Systems, 4(1). Lee, C.-H., & Chang, Y.-C. (1996). H Tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach. IEEE Transactions on Systems, 4(1).
36.
Zurück zum Zitat Lin, T.-C., Chen, M.-C., Roopaei, M., & Sahraei, B. R. (2010). Adaptive type-2 fuzzy sliding mode control for chaos synchronization of uncertain chaotic systems. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona (pp. 1–8). Lin, T.-C., Chen, M.-C., Roopaei, M., & Sahraei, B. R. (2010). Adaptive type-2 fuzzy sliding mode control for chaos synchronization of uncertain chaotic systems. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona (pp. 1–8).
37.
Zurück zum Zitat Lin, T. C., Kuo, M. J., & Hsu, C. H. (2010). Robust adaptive tracking control of multivariable nonlinear systems based on interval type-2 fuzzy approach. International Journal of Innovative Computing, Information and Control, 6(1), 941–961. Lin, T. C., Kuo, M. J., & Hsu, C. H. (2010). Robust adaptive tracking control of multivariable nonlinear systems based on interval type-2 fuzzy approach. International Journal of Innovative Computing, Information and Control, 6(1), 941–961.
38.
Zurück zum Zitat Lin, T.-C., & Kuo, C.-H. (2011). H ∞ synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Transactions, 50, 548–556.CrossRef Lin, T.-C., & Kuo, C.-H. (2011). H synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Transactions, 50, 548–556.CrossRef
39.
Zurück zum Zitat Lin, T. C., Kuo, C.-H., Lee, T.-Y., & Balas, V. E. (2012). Adaptive fuzzy H ∞ tracking design of SISO uncertainnonlinear fractional order time-delay systems. Nonlinear Dynamics, 69, 1639–1650.MathSciNetCrossRefMATH Lin, T. C., Kuo, C.-H., Lee, T.-Y., & Balas, V. E. (2012). Adaptive fuzzy H tracking design of SISO uncertainnonlinear fractional order time-delay systems. Nonlinear Dynamics, 69, 1639–1650.MathSciNetCrossRefMATH
40.
Zurück zum Zitat Lin, T. C., Lee, T.-Y., Balas, & V. E. (2011). Synchronization of uncertain fractional order chaotic systems via adaptive interval type-2 fuzzy sliding mode control. In Proceedings of the IEEE International Conference on Fuzzy Systems, Taipei, Taiwan. Lin, T. C., Lee, T.-Y., Balas, & V. E. (2011). Synchronization of uncertain fractional order chaotic systems via adaptive interval type-2 fuzzy sliding mode control. In Proceedings of the IEEE International Conference on Fuzzy Systems, Taipei, Taiwan.
41.
Zurück zum Zitat Lin, T.-C., Lee, T.-Y., & Balas, V. E. (2011). Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons and Fractals, 44, 791–801.CrossRefMATH Lin, T.-C., Lee, T.-Y., & Balas, V. E. (2011). Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons and Fractals, 44, 791–801.CrossRefMATH
42.
Zurück zum Zitat Lin, T. C., Liu, H. L., & Kuo, M. J. (2009). Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems. Engineering Applications of Artificial Intelligence, 22(3), 420–430.CrossRef Lin, T. C., Liu, H. L., & Kuo, M. J. (2009). Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems. Engineering Applications of Artificial Intelligence, 22(3), 420–430.CrossRef
43.
Zurück zum Zitat Lin, T. C., Wang, C.-H., & Liu, H.-L. (2004). Observer-based indirect adaptive fuzzy-neural tracking control for nonlinear SISO systems using VSS and H ∞ approaches. Fuzzy Sets and Systems, 143(2), 211–232.MathSciNetCrossRefMATH Lin, T. C., Wang, C.-H., & Liu, H.-L. (2004). Observer-based indirect adaptive fuzzy-neural tracking control for nonlinear SISO systems using VSS and H approaches. Fuzzy Sets and Systems, 143(2), 211–232.MathSciNetCrossRefMATH
45.
Zurück zum Zitat Mendel, J. M., & John, R. I. B. (2002). Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 10(2), 117–127.CrossRef Mendel, J. M., & John, R. I. B. (2002). Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 10(2), 117–127.CrossRef
46.
Zurück zum Zitat N’Doye, I. (2011). Généralisation du lemme de Gronwall-Bellman pour la stabilisation des systèmes fractionnaires. Ph.D. Thesis, Ecole doctorale IAEM Lorraine, Morocco. N’Doye, I. (2011). Généralisation du lemme de Gronwall-Bellman pour la stabilisation des systèmes fractionnaires. Ph.D. Thesis, Ecole doctorale IAEM Lorraine, Morocco.
47.
Zurück zum Zitat Neçaibia, A., & Ladaci, S. (2014). Self-tuning fractional order PIλDμ controller based on extremum seeking approach. International Journal of Automation and Control, Inderscience, 8(2), 99–121.CrossRef Neçaibia, A., & Ladaci, S. (2014). Self-tuning fractional order PIλDμ controller based on extremum seeking approach. International Journal of Automation and Control, Inderscience, 8(2), 99–121.CrossRef
48.
Zurück zum Zitat Neçaibia, A., Ladaci, S., Charef, A., & Loiseau, J. J. Fractional order extremum seeking control. In Proceedings of the 22nd Mediterranean Conference on Control and Automation (pp. 459–462) (MED’14, Palermo, Italy on June 16–19). Neçaibia, A., Ladaci, S., Charef, A., & Loiseau, J. J. Fractional order extremum seeking control. In Proceedings of the 22nd Mediterranean Conference on Control and Automation (pp. 459–462) (MED’14, Palermo, Italy on June 16–19).
49.
Zurück zum Zitat Odibat, Z. M. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.MathSciNetCrossRefMATH Odibat, Z. M. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.MathSciNetCrossRefMATH
50.
Zurück zum Zitat Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.4099. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences. doi:10.​1002/​mma.​4099.
51.
Zurück zum Zitat Petráš, I. (2006). A note on the fractional-order cellular neural networks. In Proceedings of the IEEE International World Congress on Computational Intelligence, International Joint Conference on Neural Networks (pp. 16–21). Petráš, I. (2006). A note on the fractional-order cellular neural networks. In Proceedings of the IEEE International World Congress on Computational Intelligence, International Joint Conference on Neural Networks (pp. 16–21).
52.
Zurück zum Zitat Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos, Solitons and Fractals, 38(1), 140–147.CrossRef Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos, Solitons and Fractals, 38(1), 140–147.CrossRef
53.
Zurück zum Zitat Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.MATH Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.MATH
54.
Zurück zum Zitat Qilian, L., & Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems, 8(5), 535–550.CrossRefMATH Qilian, L., & Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems, 8(5), 535–550.CrossRefMATH
55.
Zurück zum Zitat Rabah, K., Ladaci, S., & Lashab, M. (2016). Stabilization of a Genesio-Tesi chaotic system using a fractional order PIλDµ regulator. International Journal of Sciences and Techniques of Automatic Control and Computer Engineering, 10(1), 2085–2090. Rabah, K., Ladaci, S., & Lashab, M. (2016). Stabilization of a Genesio-Tesi chaotic system using a fractional order PIλDµ regulator. International Journal of Sciences and Techniques of Automatic Control and Computer Engineering, 10(1), 2085–2090.
56.
Zurück zum Zitat Srivastava, H. M., & Saxena, R. K. (2001). Operators of fractional integration and their applications. Applied Mathematics and Computation, 118, 1–52.MathSciNetCrossRefMATH Srivastava, H. M., & Saxena, R. K. (2001). Operators of fractional integration and their applications. Applied Mathematics and Computation, 118, 1–52.MathSciNetCrossRefMATH
57.
Zurück zum Zitat Tian, X., Fei, S., & Chai, L. (2014). Adaptive control of a class of fractional-order nonlinear complex systems with dead-zone nonlinear inputs. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China (pp. 1899–1904). Tian, X., Fei, S., & Chai, L. (2014). Adaptive control of a class of fractional-order nonlinear complex systems with dead-zone nonlinear inputs. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China (pp. 1899–1904).
58.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.CrossRef Vaidyanathan, S., & Azar, A. T. (2016). Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.CrossRef
59.
Zurück zum Zitat Vinagre, B. M., Petras, I., Podlubny, I., & Chen, Y.-Q. (2002). Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dynamics, 29, 269–279.MathSciNetCrossRefMATH Vinagre, B. M., Petras, I., Podlubny, I., & Chen, Y.-Q. (2002). Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dynamics, 29, 269–279.MathSciNetCrossRefMATH
60.
Zurück zum Zitat Wang, L. X. (1992). Fuzzy systems are universal approximators. In Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego (pp. 1163–1170). Wang, L. X. (1992). Fuzzy systems are universal approximators. In Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego (pp. 1163–1170).
61.
Zurück zum Zitat Wang, C.-H., Liu, H.-L., & Lin, T.-C. (2002). Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems. IEEE Transactions on Fuzzy Systems, 10(1), 39–49.CrossRef Wang, C.-H., Liu, H.-L., & Lin, T.-C. (2002). Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems. IEEE Transactions on Fuzzy Systems, 10(1), 39–49.CrossRef
62.
Zurück zum Zitat Wang, C.-H., Cheng, C.-S., & Lee, T.-T. (2004). Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 34(3), 1462–1477.CrossRef Wang, C.-H., Cheng, C.-S., & Lee, T.-T. (2004). Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 34(3), 1462–1477.CrossRef
65.
Zurück zum Zitat Yuan, J., Shi, B., & Yu, Z. (2014). Adaptive sliding control for a class of fractional commensurate order chaotic systems. mathematical problems in engineering. Article ID 972914. Yuan, J., Shi, B., & Yu, Z. (2014). Adaptive sliding control for a class of fractional commensurate order chaotic systems. mathematical problems in engineering. Article ID 972914.
66.
Zurück zum Zitat Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8(3), 199–249.MathSciNetCrossRefMATH Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8(3), 199–249.MathSciNetCrossRefMATH
67.
Zurück zum Zitat Zhang, R., & Yang, S. (2011). Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dynamics, 66, 831–837.MathSciNetCrossRefMATH Zhang, R., & Yang, S. (2011). Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dynamics, 66, 831–837.MathSciNetCrossRefMATH
Metadaten
Titel
Robust Adaptive Interval Type-2 Fuzzy Synchronization for a Class of Fractional Order Chaotic Systems
verfasst von
Khatir Khettab
Yassine Bensafia
Samir Ladaci
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50249-6_7