Skip to main content

2023 | OriginalPaper | Buchkapitel

Robust Educational Dialogue Act Classifiers with Low-Resource and Imbalanced Datasets

verfasst von : Jionghao Lin, Wei Tan, Ngoc Dang Nguyen, David Lang, Lan Du, Wray Buntine, Richard Beare, Guanliang Chen, Dragan Gašević

Erschienen in: Artificial Intelligence in Education

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dialogue acts (DAs) can represent conversational actions of tutors or students that take place during tutoring dialogues. Automating the identification of DAs in tutoring dialogues is significant to the design of dialogue-based intelligent tutoring systems. Many prior studies employ machine learning models to classify DAs in tutoring dialogues and invest much effort to optimize the classification accuracy by using limited amounts of training data (i.e., low-resource data scenario). However, beyond the classification accuracy, the robustness of the classifier is also important, which can reflect the capability of the classifier on learning the patterns from different class distributions. We note that many prior studies on classifying educational DAs employ cross entropy (CE) loss to optimize DA classifiers on low-resource data with imbalanced DA distribution. The DA classifiers in these studies tend to prioritize accuracy on the majority class at the expense of the minority class which might not be robust to the data with imbalanced ratios of different DA classes. To optimize the robustness of classifiers on imbalanced class distributions, we propose to optimize the performance of the DA classifier by maximizing the area under the ROC curve (AUC) score (i.e., AUC maximization). Through extensive experiments, our study provides evidence that (i) by maximizing AUC in the training process, the DA classifier achieves significant performance improvement compared to the CE approach under low-resource data, and (ii) AUC maximization approaches can improve the robustness of the DA classifier under different class imbalance ratios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
FP, Positive FeedbackWell done!”, same abbreviation from [25].
 
2
Our study has 31 dialogue acts as the classes to be classified.
 
Literatur
1.
Zurück zum Zitat Al-Luhaybi, M., Yousefi, L., Swift, S., Counsell, S., Tucker, A.: Predicting academic performance: a bootstrapping approach for learning dynamic Bayesian networks. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 26–36. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23204-7_3CrossRef Al-Luhaybi, M., Yousefi, L., Swift, S., Counsell, S., Tucker, A.: Predicting academic performance: a bootstrapping approach for learning dynamic Bayesian networks. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 26–36. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-23204-7_​3CrossRef
2.
Zurück zum Zitat Boyer, K., Ha, E.Y., Phillips, R., Wallis, M., Vouk, M., Lester, J.: Dialogue act modeling in a complex task-oriented domain. In: Proceedings of the SIGDIAL 2010 Conference, pp. 297–305 (2010) Boyer, K., Ha, E.Y., Phillips, R., Wallis, M., Vouk, M., Lester, J.: Dialogue act modeling in a complex task-oriented domain. In: Proceedings of the SIGDIAL 2010 Conference, pp. 297–305 (2010)
3.
Zurück zum Zitat Cavalcanti, A.P., et al.: How good is my feedback? A content analysis of written feedback. In: Proceedings of the LAK, LAK 2020, pp. 428–437. ACM, New York (2020) Cavalcanti, A.P., et al.: How good is my feedback? A content analysis of written feedback. In: Proceedings of the LAK, LAK 2020, pp. 428–437. ACM, New York (2020)
4.
Zurück zum Zitat Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics (2019) Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics (2019)
5.
Zurück zum Zitat D’Mello, S., Olney, A., Person, N.: Mining collaborative patterns in tutorial dialogues. J. Educ. Data Min. 2(1), 1–37 (2010) D’Mello, S., Olney, A., Person, N.: Mining collaborative patterns in tutorial dialogues. J. Educ. Data Min. 2(1), 1–37 (2010)
6.
Zurück zum Zitat Du Boulay, B., Luckin, R.: Modelling human teaching tactics and strategies for tutoring systems: 14 years on. Int. J. Artif. Intell. Educ. 26(1), 393–404 (2016)CrossRef Du Boulay, B., Luckin, R.: Modelling human teaching tactics and strategies for tutoring systems: 14 years on. Int. J. Artif. Intell. Educ. 26(1), 393–404 (2016)CrossRef
7.
Zurück zum Zitat Ezen-Can, A., Boyer, K.E.: Understanding student language: an unsupervised dialogue act classification approach. J. Educ. Data Min. 7(1), 51–78 (2015) Ezen-Can, A., Boyer, K.E.: Understanding student language: an unsupervised dialogue act classification approach. J. Educ. Data Min. 7(1), 51–78 (2015)
8.
Zurück zum Zitat Ezen-Can, A., Grafsgaard, J.F., Lester, J.C., Boyer, K.E.: Classifying student dialogue acts with multimodal learning analytics. In: Proceedings of the Fifth LAK, pp. 280–289 (2015) Ezen-Can, A., Grafsgaard, J.F., Lester, J.C., Boyer, K.E.: Classifying student dialogue acts with multimodal learning analytics. In: Proceedings of the Fifth LAK, pp. 280–289 (2015)
9.
Zurück zum Zitat Lin, J., et al.: Is it a good move? Mining effective tutoring strategies from human–human tutorial dialogues. Futur. Gener. Comput. Syst. 127, 194–207 (2022)CrossRef Lin, J., et al.: Is it a good move? Mining effective tutoring strategies from human–human tutorial dialogues. Futur. Gener. Comput. Syst. 127, 194–207 (2022)CrossRef
10.
Zurück zum Zitat Lin, J., et al.: Enhancing educational dialogue act classification with discourse context and sample informativeness. IEEE TLT (under reviewing process) Lin, J., et al.: Enhancing educational dialogue act classification with discourse context and sample informativeness. IEEE TLT (under reviewing process)
11.
Zurück zum Zitat Min, W., et al.: Predicting dialogue acts for intelligent virtual agents with multimodal student interaction data. Int. Educ. Data Min. Soc. (2016) Min, W., et al.: Predicting dialogue acts for intelligent virtual agents with multimodal student interaction data. Int. Educ. Data Min. Soc. (2016)
12.
Zurück zum Zitat Nguyen, N.D., Tan, W., Buntine, W., Beare, R., Chen, C., Du, L.: AUC maximization for low-resource named entity recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (2023) Nguyen, N.D., Tan, W., Buntine, W., Beare, R., Chen, C., Du, L.: AUC maximization for low-resource named entity recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (2023)
13.
Zurück zum Zitat Nye, B.D., Graesser, A.C., Hu, X.: Autotutor and family: a review of 17 years of natural language tutoring. Int. J. Artif. Intell. Educ. 24(4), 427–469 (2014)CrossRef Nye, B.D., Graesser, A.C., Hu, X.: Autotutor and family: a review of 17 years of natural language tutoring. Int. J. Artif. Intell. Educ. 24(4), 427–469 (2014)CrossRef
14.
Zurück zum Zitat Nye, B.D., Morrison, D.M., Samei, B.: Automated session-quality assessment for human tutoring based on expert ratings of tutoring success. Int. Educ. Data Min. Soc. (2015) Nye, B.D., Morrison, D.M., Samei, B.: Automated session-quality assessment for human tutoring based on expert ratings of tutoring success. Int. Educ. Data Min. Soc. (2015)
17.
Zurück zum Zitat Rus, V., et al.: An analysis of human tutors’ actions in tutorial dialogues. In: The Thirtieth International Flairs Conference (2017) Rus, V., et al.: An analysis of human tutors’ actions in tutorial dialogues. In: The Thirtieth International Flairs Conference (2017)
19.
Zurück zum Zitat Samei, B., Rus, V., Nye, B., Morrison, D.M.: Hierarchical dialogue act classification in online tutoring sessions. In: EDM, pp. 600–601 (2015) Samei, B., Rus, V., Nye, B., Morrison, D.M.: Hierarchical dialogue act classification in online tutoring sessions. In: EDM, pp. 600–601 (2015)
20.
Zurück zum Zitat Sha, L., et al.: Is the latest the greatest? A comparative study of automatic approaches for classifying educational forum posts. IEEE Trans. Learn. Technol. 1–14 (2022) Sha, L., et al.: Is the latest the greatest? A comparative study of automatic approaches for classifying educational forum posts. IEEE Trans. Learn. Technol. 1–14 (2022)
21.
Zurück zum Zitat Tan, W., Du, L., Buntine, W.: Diversity enhanced active learning with strictly proper scoring rules. In: Advances in Neural Information Processing Systems, vol. 34, pp. 10906–10918 (2021) Tan, W., Du, L., Buntine, W.: Diversity enhanced active learning with strictly proper scoring rules. In: Advances in Neural Information Processing Systems, vol. 34, pp. 10906–10918 (2021)
22.
Zurück zum Zitat Tan, W., et al.: Does informativeness matter? Active learning for educational dialogue act classification. In: Wang, N., et al. (eds.) AIED 2023. LNAI, vol. 13916, pp. 176–188. Springer, Cham (2023) Tan, W., et al.: Does informativeness matter? Active learning for educational dialogue act classification. In: Wang, N., et al. (eds.) AIED 2023. LNAI, vol. 13916, pp. 176–188. Springer, Cham (2023)
23.
Zurück zum Zitat Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., Schmidt, L.: Measuring robustness to natural distribution shifts in image classification. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18583–18599 (2020) Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., Schmidt, L.: Measuring robustness to natural distribution shifts in image classification. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18583–18599 (2020)
26.
Zurück zum Zitat VanLehn, K., Graesser, A.C., Jackson, G.T., Jordan, P., Olney, A., Rosé, C.P.: When are tutorial dialogues more effective than reading? Cogn. Sci. 31(1), 3–62 (2007)CrossRef VanLehn, K., Graesser, A.C., Jackson, G.T., Jordan, P., Olney, A., Rosé, C.P.: When are tutorial dialogues more effective than reading? Cogn. Sci. 31(1), 3–62 (2007)CrossRef
28.
Zurück zum Zitat Ying, Y., Wen, L., Lyu, S.: Stochastic online AUC maximization. In: Advances in Neural Information Processing Systems, vol. 29 (2016) Ying, Y., Wen, L., Lyu, S.: Stochastic online AUC maximization. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
29.
Zurück zum Zitat Yuan, Z., Yan, Y., Sonka, M., Yang, T.: Large-scale robust deep AUC maximization: a new surrogate loss and empirical studies on medical image classification. In: 2021 IEEE/CVF ICCV, Los Alamitos, CA, USA, pp. 3020–3029. IEEE Computer Society (2021) Yuan, Z., Yan, Y., Sonka, M., Yang, T.: Large-scale robust deep AUC maximization: a new surrogate loss and empirical studies on medical image classification. In: 2021 IEEE/CVF ICCV, Los Alamitos, CA, USA, pp. 3020–3029. IEEE Computer Society (2021)
31.
Zurück zum Zitat Zhao, L., et al.: METS: multimodal learning analytics of embodied teamwork learning. In: LAK23: 13th International Learning Analytics and Knowledge Conference, pp. 186–196 (2023) Zhao, L., et al.: METS: multimodal learning analytics of embodied teamwork learning. In: LAK23: 13th International Learning Analytics and Knowledge Conference, pp. 186–196 (2023)
Metadaten
Titel
Robust Educational Dialogue Act Classifiers with Low-Resource and Imbalanced Datasets
verfasst von
Jionghao Lin
Wei Tan
Ngoc Dang Nguyen
David Lang
Lan Du
Wray Buntine
Richard Beare
Guanliang Chen
Dragan Gašević
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-36272-9_10