Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2016 | Ausgabe 1/2016 Open Access

Empirical Economics 1/2016

Robust estimation of the Pareto tail index: a Monte Carlo analysis

Zeitschrift:
Empirical Economics > Ausgabe 1/2016
Autor:
Michal Brzezinski

Abstract

The Pareto distribution is often used in many areas of economics to model the right tail of heavy-tailed distributions. However, the standard method of estimating the shape parameter (the Pareto tail index) of this distribution—the maximum likelihood estimator (MLE), also known as the Hill estimator—is non-robust, in the sense that it is very sensitive to extreme observations, data contamination or model deviation. In recent years, a number of robust estimators for the Pareto tail index have been proposed, which correct the deficiency of the MLE. However, little is known about the performance of these estimators in small-sample setting, which often occurs in practice. This paper investigates the small-sample properties of the most popular robust estimators for the Pareto tail index, including the optimal B-robust estimator (Victoria-Feser and Ronchetti in Can J Stat 22:247–258, 1994), the weighted maximum likelihood estimator (Dupuis and Victoria-Feser in Can J Stat 34:639–658, 2006), the generalized median estimator (Brazauskas and Serfling in Extremes 3:231–249, 2001), the partial density component estimator (Vandewalle et al. in Comput Stat Data Anal 51:6252–6268, 2007), and the probability integral transform statistic estimator (PITSE) (Finkelstein et al. in N Am Actuar J 10:1–10, 2006). Monte Carlo simulations show that the PITSE offers the desired compromise between ease of use and power to protect against outliers in the small-sample setting.

Unsere Produktempfehlungen

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2016

Empirical Economics 1/2016 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Wieviel digitale Transformation steckt im Informationsmanagement? Zum Zusammenspiel eines etablierten und eines neuen Managementkonzepts

Das Management des Digitalisierungsprozesses ist eine drängende Herausforderung für fast jedes Unternehmen. Ausgehend von drei aufeinander aufbauenden empirischen Untersuchungen lesen Sie hier, welche generellen Themenfelder und konkreten Aufgaben sich dem Management im Rahmen dieses Prozesses stellen. Erfahren Sie hier, warum das Management der digitalen Transformation als separates Konzept zum Informationsmanagement zu betrachten
und so auch organisatorisch separiert zu implementieren ist. Jetzt gratis downloaden!

Bildnachweise