Skip to main content

01.08.2024 | Connected Automated Vehicles and ITS

Robust Fuzzy Quasi-SMC-Based Steering Control of Autonomous Vehicle Subject to Parametric Uncertainties and Disturbances

verfasst von: Raghavendra M. Shet, Girish V. Lakhekar, Nalini C. Iyer, Sandeep D. Hanwate

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes a new formulation for a robust trajectory tracking control law of an autonomous vehicle. Autonomous vehicle navigation highly relies on reliable, robust, and dependable steering mechanism, even under challenging conditions and circumstances. The controller design is based on the higher order quasi-sliding mode control (QSMC) algorithm that provides smooth motion control subjected to steering saturation and curvature constraints. In addition, an adaptive single input fuzzy logic control based on Lyapunov stability theorem is incorporated, which relies on the online estimation of perturbations rather than relying on the requirement of a priori knowledge of the upper bounds of the perturbation. Furthermore, the proposed control scheme exhibits a strong robustness toward the effect of uncertainties like parametric, tire cornering stiffness, surface bonding coefficient, and exogenous noises and disturbances. In addition to that, fuzzy control term offers a fast path-tracking error convergence toward equilibrium condition and reduced steady-state error. The overall control scheme through Lyapunov theory ensures the global asymptotic stability of the autonomous vehicle. Finally, the effectiveness and robustness of the proposed control scheme is demonstrated through numerical simulations MATLAB/SIMULINK platform for linear and nonlinear scenarios. Later, experimental validation is conducted over dSPACE SCALEXIO hardware-in-loop (HIL) platform for trajectory tracking along with the input constraints subjected to parametric uncertainties and disturbances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Abatari, H. T., & Tafti, A. D. (2013). Using a fuzzy PID controller for the path following of a car-like mobile robot. In: 2013 IEEE First RSI/ISM International Conference on Robotics and Mechatronics, pp 189–193. Abatari, H. T., & Tafti, A. D. (2013). Using a fuzzy PID controller for the path following of a car-like mobile robot. In: 2013 IEEE First RSI/ISM International Conference on Robotics and Mechatronics, pp 189–193.
Zurück zum Zitat Alcala, E., Puig, V., Quevedo, J., & Escobet, T. (2018). Gain-scheduling LPV control for autonomous vehicles including friction force estimation and compensation mechanism. IET Control Theory and Applications, 12(1), 1683–1693.MathSciNetCrossRef Alcala, E., Puig, V., Quevedo, J., & Escobet, T. (2018). Gain-scheduling LPV control for autonomous vehicles including friction force estimation and compensation mechanism. IET Control Theory and Applications, 12(1), 1683–1693.MathSciNetCrossRef
Zurück zum Zitat Alghodhaifi, H., & Lakshmanan, S. (2021). Autonomous vehicle evaluation: A comprehensive survey on modeling and simulation approaches. IEEE Access, 9, 151531–151566.CrossRef Alghodhaifi, H., & Lakshmanan, S. (2021). Autonomous vehicle evaluation: A comprehensive survey on modeling and simulation approaches. IEEE Access, 9, 151531–151566.CrossRef
Zurück zum Zitat Allou, S., Zennir, Y., & Belmeguenai, A. (2017). Fuzzy logic controller for autonomous vehicle path tracking. In: 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, pp. 328–333. Allou, S., Zennir, Y., & Belmeguenai, A. (2017). Fuzzy logic controller for autonomous vehicle path tracking. In: 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, pp. 328–333.
Zurück zum Zitat Armin, N., Milad, M., Ali, B., & Saina, F. S. (2018). Lateral control of an autonomous vehicle using integrated backstepping and sliding mode controller. Proc of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 233(1), 141–151. Armin, N., Milad, M., Ali, B., & Saina, F. S. (2018). Lateral control of an autonomous vehicle using integrated backstepping and sliding mode controller. Proc of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 233(1), 141–151.
Zurück zum Zitat Boumediene, S., Samira, C., & Hassane, A. (2020). Fuzzy swarm trajectory tracking control of unmanned aerial vehicle. Journal of Computational Design and Engineering, 7(1), 435–447. Boumediene, S., Samira, C., & Hassane, A. (2020). Fuzzy swarm trajectory tracking control of unmanned aerial vehicle. Journal of Computational Design and Engineering, 7(1), 435–447.
Zurück zum Zitat Chakraborty, S., Mazuela, M., Tran, D.-D., Corea-Araujo, J. A., Lan, Y., Loiti, A. A., Garmier, P., Aizpuru, I., & Hegazy, O. (2020). Scalable modeling approach and robust hardware-in-the-loop testing of an optimized interleaved bidirectional HV DC/DC converter for electric vehicle drivetrains. IEEE Access, 8, 115515–115536.CrossRef Chakraborty, S., Mazuela, M., Tran, D.-D., Corea-Araujo, J. A., Lan, Y., Loiti, A. A., Garmier, P., Aizpuru, I., & Hegazy, O. (2020). Scalable modeling approach and robust hardware-in-the-loop testing of an optimized interleaved bidirectional HV DC/DC converter for electric vehicle drivetrains. IEEE Access, 8, 115515–115536.CrossRef
Zurück zum Zitat Chen, J., Zhan, W., & Tomizuka, M. (2019). Autonomous driving motion planning with constrained iterative LQR. IEEE Transactions on Intelligent Vehicles, 4(2), 244–254.CrossRef Chen, J., Zhan, W., & Tomizuka, M. (2019). Autonomous driving motion planning with constrained iterative LQR. IEEE Transactions on Intelligent Vehicles, 4(2), 244–254.CrossRef
Zurück zum Zitat Deter, D., Wang, C., Cook, A., & Perry, N. K. (2021). Simulating the autonomous future: A look at virtual vehicle environments and how to validate simulation using public data Sets. IEEE Signal Processing Magazine, 38(1), 111–121.CrossRef Deter, D., Wang, C., Cook, A., & Perry, N. K. (2021). Simulating the autonomous future: A look at virtual vehicle environments and how to validate simulation using public data Sets. IEEE Signal Processing Magazine, 38(1), 111–121.CrossRef
Zurück zum Zitat Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, A., Mccullough, F., & Mouzakitis, A. (2018). Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annual Reviews in Control, 45, 76–86.MathSciNetCrossRef Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, A., Mccullough, F., & Mouzakitis, A. (2018). Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annual Reviews in Control, 45, 76–86.MathSciNetCrossRef
Zurück zum Zitat Farag, W. (2020). Complex trajectory tracking using PID control for autonomous driving. International Journal of ITS Research, 18(1), 356–366.CrossRef Farag, W. (2020). Complex trajectory tracking using PID control for autonomous driving. International Journal of ITS Research, 18(1), 356–366.CrossRef
Zurück zum Zitat Guo, J., Luo, Y., & Li, K. (2020). Robust H∞ fault-tolerant lateral control of four-wheel-steering autonomous vehicles. International Journal of Automation Technology, 21, 993–1000.CrossRef Guo, J., Luo, Y., & Li, K. (2020). Robust H∞ fault-tolerant lateral control of four-wheel-steering autonomous vehicles. International Journal of Automation Technology, 21, 993–1000.CrossRef
Zurück zum Zitat Hu, C., Qin, Y., Cao, H., Song, X., Jiang, K., Rath, J. J., & Wei, C. (2019). Lane keeping of autonomous vehicles based on differential steering with adaptive multivariable super-twisting control. Mechanical Systems and Signal Processing, 125, 330–346.CrossRef Hu, C., Qin, Y., Cao, H., Song, X., Jiang, K., Rath, J. J., & Wei, C. (2019). Lane keeping of autonomous vehicles based on differential steering with adaptive multivariable super-twisting control. Mechanical Systems and Signal Processing, 125, 330–346.CrossRef
Zurück zum Zitat Hu, J., Zhang, Y., & Rakheja, S. (2023). Adaptive lane change trajectory planning scheme for autonomous vehicles under various road frictions and vehicle speeds. IEEE Transactions on Intelligent Vehicles, 8(2), 1252–1265.CrossRef Hu, J., Zhang, Y., & Rakheja, S. (2023). Adaptive lane change trajectory planning scheme for autonomous vehicles under various road frictions and vehicle speeds. IEEE Transactions on Intelligent Vehicles, 8(2), 1252–1265.CrossRef
Zurück zum Zitat Huang, Y., Yong, S. Z., & Chen, Y. (2021). Stability control of autonomous ground vehicles using control-dependent barrier functions. IEEE Transactions on Intelligent Vehicles, 6(4), 699–710.CrossRef Huang, Y., Yong, S. Z., & Chen, Y. (2021). Stability control of autonomous ground vehicles using control-dependent barrier functions. IEEE Transactions on Intelligent Vehicles, 6(4), 699–710.CrossRef
Zurück zum Zitat Iyer, N. C., Gireesha, H. M., Shet, R. M., Nissimgoudar, P., & Mane, V. (2020). Autonomous driving platform: An initiative under institutional research project. Procedia Computer Science, 172, 875–880.CrossRef Iyer, N. C., Gireesha, H. M., Shet, R. M., Nissimgoudar, P., & Mane, V. (2020). Autonomous driving platform: An initiative under institutional research project. Procedia Computer Science, 172, 875–880.CrossRef
Zurück zum Zitat Jun, Y., Rong, M., Yanrong, Z., & Chengzhi, Z. (2012). Sliding mode control for trajectory tracking of intelligent vehicle. Physics Procedia, 33(1), 1160–1167. Jun, Y., Rong, M., Yanrong, Z., & Chengzhi, Z. (2012). Sliding mode control for trajectory tracking of intelligent vehicle. Physics Procedia, 33(1), 1160–1167.
Zurück zum Zitat Kapania, N. R., & Gerdes, J. C. (2015). Design of a feedback feedforward steering controller for accurate path tracking and stability at the limits of handling. Vehicle System Dynamics, 53(12), 1687–1704.CrossRef Kapania, N. R., & Gerdes, J. C. (2015). Design of a feedback feedforward steering controller for accurate path tracking and stability at the limits of handling. Vehicle System Dynamics, 53(12), 1687–1704.CrossRef
Zurück zum Zitat Kazemi, R., & Janbakhsh, A. A. (2010). Nonlinear adaptive sliding mode control for vehicle handling improvement via steer-by-wire. International Journal of Automotive Technology, 11, 345–354.CrossRef Kazemi, R., & Janbakhsh, A. A. (2010). Nonlinear adaptive sliding mode control for vehicle handling improvement via steer-by-wire. International Journal of Automotive Technology, 11, 345–354.CrossRef
Zurück zum Zitat Kebbati, Y., Ait-Oufroukh, N., Ichalal, D., & Vigneron, V. (2022). Lateral control for autonomous wheeled vehicles: A technical review. Asian Journal of Control, 25(4), 2539–2563.MathSciNetCrossRef Kebbati, Y., Ait-Oufroukh, N., Ichalal, D., & Vigneron, V. (2022). Lateral control for autonomous wheeled vehicles: A technical review. Asian Journal of Control, 25(4), 2539–2563.MathSciNetCrossRef
Zurück zum Zitat Khasawneh, L., & Das, M. (2021) Lateral trajectory tracking control using backstepping method for autonomous vehicles. In: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, pp. 1013–1016. Khasawneh, L., & Das, M. (2021) Lateral trajectory tracking control using backstepping method for autonomous vehicles. In: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, pp. 1013–1016.
Zurück zum Zitat Kim, Y. H., Ahn, S. C., & Kwon, W. H. (2000). Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets and Systems, Col., 111(2), 215–224.MathSciNetCrossRef Kim, Y. H., Ahn, S. C., & Kwon, W. H. (2000). Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets and Systems, Col., 111(2), 215–224.MathSciNetCrossRef
Zurück zum Zitat Lakhekar, G. V., & Waghmare, L. M. (2017). Robust maneuvering of autonomous underwater vehicle: An adaptive fuzzy PI sliding mode control. Intelligent Service Robotics, 10(3), 195–212.CrossRef Lakhekar, G. V., & Waghmare, L. M. (2017). Robust maneuvering of autonomous underwater vehicle: An adaptive fuzzy PI sliding mode control. Intelligent Service Robotics, 10(3), 195–212.CrossRef
Zurück zum Zitat Lakhekar, G. V., & Waghmare, L. M. (2022). Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles. Journal of Marine Engineering & Technology, 22(3), 131–152.CrossRef Lakhekar, G. V., & Waghmare, L. M. (2022). Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles. Journal of Marine Engineering & Technology, 22(3), 131–152.CrossRef
Zurück zum Zitat Lakhekar, G. V., Waghmare, L. M., & Roy, R. G. (2019). Disturbance observer-based fuzzy adapted S-surface controller for spatial trajectory tracking of autonomous underwater vehicle. IEEE Transactions on Intelligent Vehicles, 4(4), 622–636.CrossRef Lakhekar, G. V., Waghmare, L. M., & Roy, R. G. (2019). Disturbance observer-based fuzzy adapted S-surface controller for spatial trajectory tracking of autonomous underwater vehicle. IEEE Transactions on Intelligent Vehicles, 4(4), 622–636.CrossRef
Zurück zum Zitat Lee, Y., & Zak, S. H. (2002). Genetic fuzzy tracking controllers for autonomous ground vehicles. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, vol. 3, pp. 2144–2149. Lee, Y., & Zak, S. H. (2002). Genetic fuzzy tracking controllers for autonomous ground vehicles. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, vol. 3, pp. 2144–2149.
Zurück zum Zitat Lee, K., Jeon, S., Kim, H., & Kum, D. (2019). Optimal path tracking control of autonomous vehicle: Adaptive Full-State Linear Quadratic Gaussian (LQG) Control. IEEE Access, 7(1), 109120–109133.CrossRef Lee, K., Jeon, S., Kim, H., & Kum, D. (2019). Optimal path tracking control of autonomous vehicle: Adaptive Full-State Linear Quadratic Gaussian (LQG) Control. IEEE Access, 7(1), 109120–109133.CrossRef
Zurück zum Zitat Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9–10), 924–941.MathSciNetCrossRef Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9–10), 924–941.MathSciNetCrossRef
Zurück zum Zitat Levant, A. (2005). Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11), 1812–1816.MathSciNetCrossRef Levant, A. (2005). Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11), 1812–1816.MathSciNetCrossRef
Zurück zum Zitat Li, L. L., & Zhang, J. S. (2021). Review article: State-of-the-art trajectory tracking of autonomous vehicles. Mechanical Sciences, 12, 419–432.CrossRef Li, L. L., & Zhang, J. S. (2021). Review article: State-of-the-art trajectory tracking of autonomous vehicles. Mechanical Sciences, 12, 419–432.CrossRef
Zurück zum Zitat Lo, J.-C., & Kuo, Y.-H. (1998). Decoupled fuzzy sliding-mode control. IEEE Transactions on Fuzzy Systems, 6(3), 426–435.CrossRef Lo, J.-C., & Kuo, Y.-H. (1998). Decoupled fuzzy sliding-mode control. IEEE Transactions on Fuzzy Systems, 6(3), 426–435.CrossRef
Zurück zum Zitat Mien, V., Kang, H.-J., & Shin, K.-S. (2013). Adaptive fuzzy quasi-continuous high-order sliding mode controller for output feedback tracking control of robot manipulators. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(1), 90–107. Mien, V., Kang, H.-J., & Shin, K.-S. (2013). Adaptive fuzzy quasi-continuous high-order sliding mode controller for output feedback tracking control of robot manipulators. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(1), 90–107.
Zurück zum Zitat Nguyen, A.-T., Sentouh, C., & Popieul, J.-C. (2018). Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments. Journal of the Franklin Institute, 355(18), 9374–9395.MathSciNetCrossRef Nguyen, A.-T., Sentouh, C., & Popieul, J.-C. (2018). Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments. Journal of the Franklin Institute, 355(18), 9374–9395.MathSciNetCrossRef
Zurück zum Zitat Panchade, V. M., & Patre, B. M. (2019). Quasi continuous sliding mode control with fuzzy switching gain for an induction motor. Journal of Intelligent & Fuzzy Systems, 36(2), 1837–1854.CrossRef Panchade, V. M., & Patre, B. M. (2019). Quasi continuous sliding mode control with fuzzy switching gain for an induction motor. Journal of Intelligent & Fuzzy Systems, 36(2), 1837–1854.CrossRef
Zurück zum Zitat Park, M., & Kang, Y. (2021). Experimental verification of a drift controller for autonomous vehicle tracking: A circular trajectory using LQR method. International Journal of Control, Automation and Systems, 19(1), 404–416.CrossRef Park, M., & Kang, Y. (2021). Experimental verification of a drift controller for autonomous vehicle tracking: A circular trajectory using LQR method. International Journal of Control, Automation and Systems, 19(1), 404–416.CrossRef
Zurück zum Zitat Pukdeboon, C., Zinober, A. S. I., & Thein, M.-W.L. (2010). Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE Transactions on Industrial Electronics, 57(4), 1436–1444.CrossRef Pukdeboon, C., Zinober, A. S. I., & Thein, M.-W.L. (2010). Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE Transactions on Industrial Electronics, 57(4), 1436–1444.CrossRef
Zurück zum Zitat Rafaila, R., & Livint, C. G. (2016) H-infinity control of automatic vehicle steering. In: International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, pp. 031–036. Rafaila, R., & Livint, C. G. (2016) H-infinity control of automatic vehicle steering. In: International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, pp. 031–036.
Zurück zum Zitat Rahmanei, H., Aliabadi, A., Ghaffari, A., & Azadi, S. (2024). Lyapunov-based control system design for trajectory tracking in electrical autonomous vehicles with in-wheel motors. Journal of the Franklin Institute, 361(6), 106736.CrossRef Rahmanei, H., Aliabadi, A., Ghaffari, A., & Azadi, S. (2024). Lyapunov-based control system design for trajectory tracking in electrical autonomous vehicles with in-wheel motors. Journal of the Franklin Institute, 361(6), 106736.CrossRef
Zurück zum Zitat Rajamani, R. (2012). Vehicle dynamics and control, Springer Mechanical Engineering Series. Rajamani, R. (2012). Vehicle dynamics and control, Springer Mechanical Engineering Series.
Zurück zum Zitat Rigatos, G., & Busawon, K. (2018). Robotic manipulators and vehicles: Control, estimation and filtering, studies in systems, decision and control (Vol. 152). Springer Cham. Rigatos, G., & Busawon, K. (2018). Robotic manipulators and vehicles: Control, estimation and filtering, studies in systems, decision and control (Vol. 152). Springer Cham.
Zurück zum Zitat Roopaei, M., & Jahromi, M. Z. (2009). Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Analysis: Theory, Methods & Applications, 71(10), 4430–4437.MathSciNetCrossRef Roopaei, M., & Jahromi, M. Z. (2009). Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Analysis: Theory, Methods & Applications, 71(10), 4430–4437.MathSciNetCrossRef
Zurück zum Zitat Ross, T. J. (2009). Fuzzy logic with engineering applications (2nd ed.). Wiley. Ross, T. J. (2009). Fuzzy logic with engineering applications (2nd ed.). Wiley.
Zurück zum Zitat Ruslan, N. A. I., Amer, N. H., Hudha, K., Kadir, Z. A., Ishak, S. A. F. M., & Dardin, S. M. F. S. (2023). Modelling and control strategies in path tracking control for autonomous tracked vehicles: A review of state of the art and challenges. Journal of Terramechanics, 105, 67–79.CrossRef Ruslan, N. A. I., Amer, N. H., Hudha, K., Kadir, Z. A., Ishak, S. A. F. M., & Dardin, S. M. F. S. (2023). Modelling and control strategies in path tracking control for autonomous tracked vehicles: A review of state of the art and challenges. Journal of Terramechanics, 105, 67–79.CrossRef
Zurück zum Zitat Shet, R. M., Iyer, N. C., & Jeppu, Y. (2021). Fault tolerant control system for autonomous vehicle: A survey. Journal of Advanced Research in Dynamical and Control Systems, 12(8), 813–830. Shet, R. M., Iyer, N. C., & Jeppu, Y. (2021). Fault tolerant control system for autonomous vehicle: A survey. Journal of Advanced Research in Dynamical and Control Systems, 12(8), 813–830.
Zurück zum Zitat Shet, R. M., Lakhekar, G. V., & Iyer, N. C. (2023). Design of quasi fuzzy sliding mode based maneuvering of autonomous vehicle. International Journal of Dynamics and Control, 1–24, 1963–1986. Shet, R. M., Lakhekar, G. V., & Iyer, N. C. (2023). Design of quasi fuzzy sliding mode based maneuvering of autonomous vehicle. International Journal of Dynamics and Control, 1–24, 1963–1986.
Zurück zum Zitat Stork, M., Pinker, J., & Weissar, P. (2019). Adaptive Control System for Autonomous Vehicle Path Following. In: International Conference on applied electronics (AE), Pilsen, Czech Republic, pp. 1–4. Stork, M., Pinker, J., & Weissar, P. (2019). Adaptive Control System for Autonomous Vehicle Path Following. In: International Conference on applied electronics (AE), Pilsen, Czech Republic, pp. 1–4.
Zurück zum Zitat Tagne, G., Talj, R., & Charara, A. (2013). Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 678–683. Tagne, G., Talj, R., & Charara, A. (2013). Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 678–683.
Zurück zum Zitat Tan, X., Liu, D., & Xiong, H. (2022). Optimal control method of path tracking for four-wheel steering vehicles. MDPI Actuators, 11(2), 61.CrossRef Tan, X., Liu, D., & Xiong, H. (2022). Optimal control method of path tracking for four-wheel steering vehicles. MDPI Actuators, 11(2), 61.CrossRef
Zurück zum Zitat Tang, Z., Xing, Xu., Wang, F., Jiang, X., & Jiang, H. (2019). Coordinated control for path following of two-wheel independently actuated autonomous ground vehicle. IET Intelligent Transport Systems, 13(4), 628–635.CrossRef Tang, Z., Xing, Xu., Wang, F., Jiang, X., & Jiang, H. (2019). Coordinated control for path following of two-wheel independently actuated autonomous ground vehicle. IET Intelligent Transport Systems, 13(4), 628–635.CrossRef
Zurück zum Zitat Tomás, C. M., Marcos, E. O., & Paul, V. S. (2013). Design and simulation of control strategies for trajectory tracking in an autonomous ground vehicle. IFAC Proceedings, 46(24), 118–123. Tomás, C. M., Marcos, E. O., & Paul, V. S. (2013). Design and simulation of control strategies for trajectory tracking in an autonomous ground vehicle. IFAC Proceedings, 46(24), 118–123.
Zurück zum Zitat Wang, Y., Gao, S., Wang, Y., Wang, P., Zhou, Y., & Xu, Y. (2021). Robust trajectory tracking control for autonomous vehicle subject to velocity-varying and uncertain lateral disturbance. Archives of Transport, 57(1), 7–23.CrossRef Wang, Y., Gao, S., Wang, Y., Wang, P., Zhou, Y., & Xu, Y. (2021). Robust trajectory tracking control for autonomous vehicle subject to velocity-varying and uncertain lateral disturbance. Archives of Transport, 57(1), 7–23.CrossRef
Zurück zum Zitat Yao, Q., Tian, Y., Wang, Q., & Wang, S. (2020). Control strategies on path tracking for autonomous vehicle: State of the Art and future challenges. IEEE Access, 8(1), 161211–161222.CrossRef Yao, Q., Tian, Y., Wang, Q., & Wang, S. (2020). Control strategies on path tracking for autonomous vehicle: State of the Art and future challenges. IEEE Access, 8(1), 161211–161222.CrossRef
Zurück zum Zitat Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020). A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 8, 58443–58469.CrossRef Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020). A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 8, 58443–58469.CrossRef
Zurück zum Zitat Zhang, L., Ding, H., Shi, J., Huang, Y., Chen, H., Guo, K., & Li, Q. (2020). An adaptive backstepping sliding mode controller to improve vehicle maneuverability and stability via torque vectoring control. IEEE Transactions on Vehicular Technology, 69(3), 2598–2612.CrossRef Zhang, L., Ding, H., Shi, J., Huang, Y., Chen, H., Guo, K., & Li, Q. (2020). An adaptive backstepping sliding mode controller to improve vehicle maneuverability and stability via torque vectoring control. IEEE Transactions on Vehicular Technology, 69(3), 2598–2612.CrossRef
Zurück zum Zitat Zhang, C., Hu, J., Qiu, J., Yang, W., Sun, H., & Chen, Q. (2019). A novel fuzzy observer-based steering control approach for path tracking in autonomous vehicles. IEEE Transactions on Fuzzy Systems, 27(2), 278–290. Zhang, C., Hu, J., Qiu, J., Yang, W., Sun, H., & Chen, Q. (2019). A novel fuzzy observer-based steering control approach for path tracking in autonomous vehicles. IEEE Transactions on Fuzzy Systems, 27(2), 278–290.
Zurück zum Zitat Zhang, H. Y., & Rakheja, S. (2022). Adaptive trajectory tracking for car-like vehicles with input constraints. IEEE Transactions on Industrial Electronics, 69(3), 2801–2810.CrossRef Zhang, H. Y., & Rakheja, S. (2022). Adaptive trajectory tracking for car-like vehicles with input constraints. IEEE Transactions on Industrial Electronics, 69(3), 2801–2810.CrossRef
Zurück zum Zitat Zhang, J., Wu, J., Liu, J., Zhou, Q., Xia, J., Sun, W., & He, X. (2022). Command-filter-adaptive-based lateral motion control for autonomous vehicle. Control Engineering Practice, 121, 105044.CrossRef Zhang, J., Wu, J., Liu, J., Zhou, Q., Xia, J., Sun, W., & He, X. (2022). Command-filter-adaptive-based lateral motion control for autonomous vehicle. Control Engineering Practice, 121, 105044.CrossRef
Zurück zum Zitat Zou, T., Angeles, J., & Hassani, F. (2018). Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. Robotics and Autonomous Systems, 110(1), 102–111.CrossRef Zou, T., Angeles, J., & Hassani, F. (2018). Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. Robotics and Autonomous Systems, 110(1), 102–111.CrossRef
Metadaten
Titel
Robust Fuzzy Quasi-SMC-Based Steering Control of Autonomous Vehicle Subject to Parametric Uncertainties and Disturbances
verfasst von
Raghavendra M. Shet
Girish V. Lakhekar
Nalini C. Iyer
Sandeep D. Hanwate
Publikationsdatum
01.08.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00123-6