Skip to main content
Erschienen in:

01.08.2024

Robust Possibilistic Fuzzy Additive Partition Clustering Motivated by Deep Local Information

verfasst von: Chengmao Wu, Wen Wu

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aiming at the weak robustness of possibilistic fuzzy clustering against noise, a robust possibilistic fuzzy additive partition clustering with master–slave neighborhood information constraints is proposed for high noise image segmentation. This algorithm first constructs a master–slave neighborhood model, which consists of the master neighborhood window of the current pixel and the slave neighborhood window around the master neighborhood pixel. Then, the master–slave neighborhood information is integrated into the possibilistic fuzzy additive partition clustering model, and a novel robust possibilistic fuzzy clustering model incorporating deep local information is constructed. Next, this clustering model is further simplified by Cauchy inequality and a robust master–slave neighborhood information-driven possibilistic fuzzy clustering algorithm is derived by optimization theory. Extensive experimental results indicate that the proposed algorithm is very effective for noisy image segmentation, and its segmentation performance is significantly better than many existing state-of-the-art fuzzy clustering-related algorithms. In short, the work of this paper has profound significance for the development of robust fuzzy clustering theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
18.
Zurück zum Zitat Y. Guo, A. Sengur, A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst. Signal Process. 32(4), 1699–1723 (2013)MathSciNetCrossRef Y. Guo, A. Sengur, A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circuits Syst. Signal Process. 32(4), 1699–1723 (2013)MathSciNetCrossRef
Metadaten
Titel
Robust Possibilistic Fuzzy Additive Partition Clustering Motivated by Deep Local Information
verfasst von
Chengmao Wu
Wen Wu
Publikationsdatum
01.08.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 12/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02758-3