Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Robust Shared-Control for Rear-Wheel Drive Cars

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter studies the shared-control problem for the kinematic model of a group of rear-wheel drive cars in a static (i.e., time-invariant) and in a dynamic (i.e., time-varying) environment. The design of the shared controller is based on either absolute positions or “correlated positions”, such as distances to the obstacles and angle differences. The shared control is used to guarantee the safety of the car when the driver behaves dangerously. Formal properties of the closed-loop-system with shared control are established by a Lyapunov-like analysis. We also consider uncertainties in the dynamics and prove that the shared controller is able to help the driver drive the car safely in the presence of bounded disturbances. Finally, the effectiveness of the controller is verified by typical case studies, such as turning, overtaking, and emergency braking, through MATLAB simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We use (x(t), y(t)) to denote the Cartesian coordinates of the center of the rear-axle at the time instant t. The admissible Cartesian configuration set \(\mathcal{P}_a(t)\) is such that
$$ (x(t),y(t))\in \mathcal{P}_a(t), \text { for all } t\ge 0. $$
.
 
2
For each human input \(v_h\) and heading angle \(\theta \), the \(i^\mathrm{th}\) constraint is active at position p if there exists a positive \(\eta \) such that \(s_i\left( p+\eta \left[ \begin{array}{c}v_h\cos \theta \\ v_h\sin \theta \end{array}\right] \right) +t_i=0\). As a results, the constraint is said to be “active” if the car is moving towards the constraint.
 
3
The definition of the function \(\mathrm{atg}(\cdot )\), given in [8], is close to that of the standard four quadrant arctan function except that its range equals to \((-\infty ,+\infty )\) rather than \([-\pi , \pi )\). In addition, it is a smooth function with values in the range \((-\infty ,+\infty )\). Therefore \(\dot{\theta }_r^i\) always exist, which is a necessary condition for calculating \(\dot{L}^i\), where \(L^i\) is given by (2.9).
 
4
The notation \(S^i\mathcal{P}_a+T^i\) with \(S^i\in \mathbb {R}^{2\times 2}, \mathcal{P}_a\in \mathbb {R}^2\) and \(T^i\in \mathbb {R}^2\), denotes the set defined by
$$ \{x\in \mathbb {R}^2|x=S^iy+T^i, y\in \mathcal{P}_a\}. $$
.
 
5
Recall that the definition of the function atg(\(\cdot \)) is given in [8].
 
6
Note that this is a Lyapunov function only for the \(\phi \) system.
 
7
Recall that the definition of the function atg(\(\cdot \)) is given in [8].
 
Literatur
1.
Zurück zum Zitat Chiang HH, Wu SJ, Perng JW, Wu BF, Lee TT (2010) The human-in-the-loop design approach to the longitudinal automation system for an intelligent vehicle. IEEE Trans Syst Man Cybern 40(4):708–720 Chiang HH, Wu SJ, Perng JW, Wu BF, Lee TT (2010) The human-in-the-loop design approach to the longitudinal automation system for an intelligent vehicle. IEEE Trans Syst Man Cybern 40(4):708–720
2.
Zurück zum Zitat Drage T, Kalinowski J, Braunl T (2014) Integration of drive-by-wire with navigation control for a driverless electric race car. IEEE Intell Transp Syst Mag 6(4):23–33CrossRef Drage T, Kalinowski J, Braunl T (2014) Integration of drive-by-wire with navigation control for a driverless electric race car. IEEE Intell Transp Syst Mag 6(4):23–33CrossRef
3.
Zurück zum Zitat Fadilah SI, Shariff ARM (2014) A time gap interval for safe following distance (TGFD) in avoiding car collision in wireless vehicular networks (VANET) environment. In: Proceedings of international conference on intelligent systems, modelling and simulation, pp 683–689 Fadilah SI, Shariff ARM (2014) A time gap interval for safe following distance (TGFD) in avoiding car collision in wireless vehicular networks (VANET) environment. In: Proceedings of international conference on intelligent systems, modelling and simulation, pp 683–689
4.
Zurück zum Zitat Ferrara A, Librino R, Massola A, Miglietta M, Vecchio C (2008) Sliding mode control for urban vehicles platooning. In: Proceedings of IEEE intelligent vehicles symposium, pp 877–882 Ferrara A, Librino R, Massola A, Miglietta M, Vecchio C (2008) Sliding mode control for urban vehicles platooning. In: Proceedings of IEEE intelligent vehicles symposium, pp 877–882
5.
Zurück zum Zitat Gnatzig S, Schuller F, Lienkamp M (2012) Human-machine interaction as key technology for driverless driving - a trajectory-based shared autonomy control approach. In: Proceedings of IEEE conference on RO-MAN, Paris, pp 913–918 Gnatzig S, Schuller F, Lienkamp M (2012) Human-machine interaction as key technology for driverless driving - a trajectory-based shared autonomy control approach. In: Proceedings of IEEE conference on RO-MAN, Paris, pp 913–918
6.
Zurück zum Zitat Jiang J, Astolfi A (2013) Shared-control for fully actuated linear mechanical systems. In: Proceedings of IEEE conference on decision and control, Italy Jiang J, Astolfi A (2013) Shared-control for fully actuated linear mechanical systems. In: Proceedings of IEEE conference on decision and control, Italy
7.
Zurück zum Zitat Jiang J, Astolfi A (2014) Shared-control for the kinematic model of a mobile robot. In: Proceedings of IEEE conference on decision and control, USA Jiang J, Astolfi A (2014) Shared-control for the kinematic model of a mobile robot. In: Proceedings of IEEE conference on decision and control, USA
8.
Zurück zum Zitat Jiang J, Astolfi A (2015) Shared-control for the kinematic model of a rear-wheel drive car. In: Proceedings of american control conference, USA Jiang J, Astolfi A (2015) Shared-control for the kinematic model of a rear-wheel drive car. In: Proceedings of american control conference, USA
9.
Zurück zum Zitat Jiang J, Astolfi A (2016) Shared-control for typical driving scenarios. In: submitted to european control conference, Denmark Jiang J, Astolfi A (2016) Shared-control for typical driving scenarios. In: submitted to european control conference, Denmark
10.
Zurück zum Zitat Kianfar R, Augusto B, Ebadighajari A, Hakeem U, Nilsson J, Raza A, Tabar RS, Irukulapati NV, Englund C, Falcone P, Papanastasiou S, Svensson L, Wymeersch H (2012) Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge. IEEE Trans Intell Transp Syst 13(3):994–1007CrossRef Kianfar R, Augusto B, Ebadighajari A, Hakeem U, Nilsson J, Raza A, Tabar RS, Irukulapati NV, Englund C, Falcone P, Papanastasiou S, Svensson L, Wymeersch H (2012) Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge. IEEE Trans Intell Transp Syst 13(3):994–1007CrossRef
11.
Zurück zum Zitat Kim JS, Ryu JH (2013) Shared teleoperation of a vehicle with a virtual driving interface. In: Proceedings of IEEE international conference on control, automation and systems, Gwangju, pp 51–857 Kim JS, Ryu JH (2013) Shared teleoperation of a vehicle with a virtual driving interface. In: Proceedings of IEEE international conference on control, automation and systems, Gwangju, pp 51–857
12.
Zurück zum Zitat Lee U, Yoon S, Shim HC, Vasseur P (2014) Local path planning in a complex environment for self-driving car. In: Proceedings of IEEE annual international conference on cyber technology in automation, control, and intelligent systems, Hong Kong, pp 445–450 Lee U, Yoon S, Shim HC, Vasseur P (2014) Local path planning in a complex environment for self-driving car. In: Proceedings of IEEE annual international conference on cyber technology in automation, control, and intelligent systems, Hong Kong, pp 445–450
13.
Zurück zum Zitat Lilly JH (2007) Evolution of a negative-rule fuzzy obstacle avoidance controller for an autonomous vehicle. IEEE Trans Fuzzy Syst 15(4):718–728CrossRef Lilly JH (2007) Evolution of a negative-rule fuzzy obstacle avoidance controller for an autonomous vehicle. IEEE Trans Fuzzy Syst 15(4):718–728CrossRef
14.
Zurück zum Zitat Massera Filho C, Wolf DF, Grassi V, Osorio FS (2014) Longitudinal and lateral control for autonomous ground vehicles. In: Proceedings of IEEE symposium on intelligent vehicles, pp 588–593 Massera Filho C, Wolf DF, Grassi V, Osorio FS (2014) Longitudinal and lateral control for autonomous ground vehicles. In: Proceedings of IEEE symposium on intelligent vehicles, pp 588–593
15.
Zurück zum Zitat McGann C, Py F, Rajan K, Ryan J, Henthorn R (2008) Adaptive control for autonomous underwater vehicles. In: Proceedings of AAAI conference on artificial intelligence, pp 1319–1324 McGann C, Py F, Rajan K, Ryan J, Henthorn R (2008) Adaptive control for autonomous underwater vehicles. In: Proceedings of AAAI conference on artificial intelligence, pp 1319–1324
16.
Zurück zum Zitat Michalek M, Kielczewski M (2013) Helping a driver in backward docking with n-trailer vehicles by the passive control-assistance system. In: Proceedings of IEEE international conference on intelligent transportation systems, pp 1993–1999 Michalek M, Kielczewski M (2013) Helping a driver in backward docking with n-trailer vehicles by the passive control-assistance system. In: Proceedings of IEEE international conference on intelligent transportation systems, pp 1993–1999
17.
Zurück zum Zitat Mohajerpoor R, Dezfuli SS, Bahadori B (2013) Teleoperation of an unmanned car via robust adaptive backstepping control approach. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, pp 1540–1545 Mohajerpoor R, Dezfuli SS, Bahadori B (2013) Teleoperation of an unmanned car via robust adaptive backstepping control approach. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, pp 1540–1545
18.
Zurück zum Zitat Prieur C (2001) Uniting local and global controllers with robustness to vanishing noise. Math Control Signals Syst 14:143–172MathSciNetCrossRefMATH Prieur C (2001) Uniting local and global controllers with robustness to vanishing noise. Math Control Signals Syst 14:143–172MathSciNetCrossRefMATH
19.
20.
Zurück zum Zitat Wang J, Zhang L, Zhang D, Li K (2009) Cooperative (rather than autonomous) vehicle-highway automation systems. IEEE Intell Transp Syst Mag 1(1):10–19CrossRef Wang J, Zhang L, Zhang D, Li K (2009) Cooperative (rather than autonomous) vehicle-highway automation systems. IEEE Intell Transp Syst Mag 1(1):10–19CrossRef
21.
Zurück zum Zitat Wang J, Zhang L, Zhang D, Li K (2012) An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans Intell Transp Syst 14(1):1–12CrossRef Wang J, Zhang L, Zhang D, Li K (2012) An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans Intell Transp Syst 14(1):1–12CrossRef
22.
Zurück zum Zitat Zhou SH, Yasunobu S (2006) A cooperative auto-driving system based on fuzzy instruction. In: Proceedings of 7th international symposium on advanced intelligent systems, pp 300–304 Zhou SH, Yasunobu S (2006) A cooperative auto-driving system based on fuzzy instruction. In: Proceedings of 7th international symposium on advanced intelligent systems, pp 300–304
Metadaten
Titel
Robust Shared-Control for Rear-Wheel Drive Cars
verfasst von
Jingjing Jiang
Alessandro Astolfi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-40533-9_2

Neuer Inhalt