Skip to main content
Erschienen in: Autonomous Robots 6/2017

25.03.2017

Robust trajectory optimization under frictional contact with iterative learning

verfasst von: Jingru Luo, Kris Hauser

Erschienen in: Autonomous Robots | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimization is often difficult to apply to robots due to the presence of errors in model parameters, which can cause constraints to be violated during execution on the robot. This paper presents a method to optimize trajectories with large modeling errors using a combination of robust optimization and parameter learning. In particular it considers the context of contact modeling, which is highly susceptible to errors due to uncertain friction estimates, contact point estimates, and sensitivity to noise in actuator effort. A robust time-scaling method is presented that computes a dynamically-feasible, minimum-cost trajectory along a fixed path under frictional contact. The robust optimization model accepts confidence intervals on uncertain parameters, and uses a convex parameterization that computes dynamically-feasible motions in seconds. Optimization is combined with an iterative learning method that uses feedback from execution to learn confidence bounds on modeling parameters. It is applicable to general problems with multiple uncertain parameters that satisfy a monotonicity condition that requires parameters to have conservative and optimistic settings. The method is applied to manipulator performing a “waiter” task, on which an object is moved on a carried tray as quickly as possible, and to a simulated humanoid locomotion task. Experiments demonstrate this method can compensate for large modeling errors within a handful of iterations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRef Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRef
Zurück zum Zitat Bertsimas, D., & Thiele, A. (2006). Robust and data-driven optimization: Modern decision-making under uncertainty. In INFORMS tutorials in operations research: Models, methods, and applications for innovative decision making (pp. 1–39). Bertsimas, D., & Thiele, A. (2006). Robust and data-driven optimization: Modern decision-making under uncertainty. In INFORMS tutorials in operations research: Models, methods, and applications for innovative decision making (pp. 1–39).
Zurück zum Zitat Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.CrossRefMATH Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.CrossRefMATH
Zurück zum Zitat Bobrow, J. E., Dubowsky, S., & Gibson, J. S. (1985). Time-optimal control of robotic manipulators along specified paths. The International Journal of Robotics Research, 4(3), 3–17.CrossRef Bobrow, J. E., Dubowsky, S., & Gibson, J. S. (1985). Time-optimal control of robotic manipulators along specified paths. The International Journal of Robotics Research, 4(3), 3–17.CrossRef
Zurück zum Zitat Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning control. IEEE Control Systems, 26(3), 96–114.CrossRef Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning control. IEEE Control Systems, 26(3), 96–114.CrossRef
Zurück zum Zitat Cobb, G. W., Witmer, J. A., & Cryer, J. D. (1997). An electronic companion to statistics. New York: Cogito Learning Media. Cobb, G. W., Witmer, J. A., & Cryer, J. D. (1997). An electronic companion to statistics. New York: Cogito Learning Media.
Zurück zum Zitat Constantinescu, D., & Croft, E. A. (2000). Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. Journal of Robotic Systems, 17, 223–249.CrossRefMATH Constantinescu, D., & Croft, E. A. (2000). Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. Journal of Robotic Systems, 17, 223–249.CrossRefMATH
Zurück zum Zitat Dahl, O., & Nielsen, L. (1989). Torque limited path following by on-line trajectory time scaling. In IEEE international conference on robotics and automation (ICRA) (Vol. 2, pp. 1122–1128). doi:10.1109/ROBOT.1989.100131. Dahl, O., & Nielsen, L. (1989). Torque limited path following by on-line trajectory time scaling. In IEEE international conference on robotics and automation (ICRA) (Vol. 2, pp. 1122–1128). doi:10.​1109/​ROBOT.​1989.​100131.
Zurück zum Zitat Escande, A., Kheddar, A., Miossec, S., & Garsault, S. (2009) Planning support contact-points for acyclic motions and experiments on HRP-2. In: O. Khatib, V. Kumar, G. J. Pappas (Eds.), Experimental Robotics. Springer Tracts in Advanced Robotics, Vol. 54. Springer, Berlin, Heidelberg. Escande, A., Kheddar, A., Miossec, S., & Garsault, S. (2009) Planning support contact-points for acyclic motions and experiments on HRP-2. In: O. Khatib, V. Kumar, G. J. Pappas (Eds.), Experimental Robotics. Springer Tracts in Advanced Robotics, Vol. 54. Springer, Berlin, Heidelberg.
Zurück zum Zitat Gill, P. E., Murray, W., & Saunders, M. A. (1997). An SQP algorithm for large-scale constrained optimization: Snopt. Gill, P. E., Murray, W., & Saunders, M. A. (1997). An SQP algorithm for large-scale constrained optimization: Snopt.
Zurück zum Zitat Harada, K., Hauser, K., Bretl, T., & Latombe, J.-C. (2006). Natural motion generation for humanoid robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Harada, K., Hauser, K., Bretl, T., & Latombe, J.-C. (2006). Natural motion generation for humanoid robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Hargraves, C. R., & Paris, S. W. (1987). Direct trajectory optimization using nonlinear programming and collocation. Journal of Guidance, Control, and Dynamics, 10(4), 338–342.CrossRefMATH Hargraves, C. R., & Paris, S. W. (1987). Direct trajectory optimization using nonlinear programming and collocation. Journal of Guidance, Control, and Dynamics, 10(4), 338–342.CrossRefMATH
Zurück zum Zitat Hauser, K. (2013a). Fast interpolation and time-optimization on implicit contact submanifolds. In Robotics: Science and systems. Hauser, K. (2013a). Fast interpolation and time-optimization on implicit contact submanifolds. In Robotics: Science and systems.
Zurück zum Zitat Hauser, K. (2013b). Robust contact generation for robot simulation with unstructured meshes. In International symposium on robotics research, Singapore. Hauser, K. (2013b). Robust contact generation for robot simulation with unstructured meshes. In International symposium on robotics research, Singapore.
Zurück zum Zitat Hauser, K. (2014). Fast interpolation and time-optimization with contact. The International Journal of Robotics Research, 33(9), 1231–1250.CrossRef Hauser, K. (2014). Fast interpolation and time-optimization with contact. The International Journal of Robotics Research, 33(9), 1231–1250.CrossRef
Zurück zum Zitat Kunz, T., & Stilman, M. (2012). Time-optimal trajectory generation for path following with bounded acceleration and velocity. In Robotics: Science and systems. Kunz, T., & Stilman, M. (2012). Time-optimal trajectory generation for path following with bounded acceleration and velocity. In Robotics: Science and systems.
Zurück zum Zitat Lertkultanon, P., & Pham, Q.-C. (2014). Dynamic non-prehensile object transportation. In International conference on control automation robotics vision (ICARCV) (pp. 1392–1397). Lertkultanon, P., & Pham, Q.-C. (2014). Dynamic non-prehensile object transportation. In International conference on control automation robotics vision (ICARCV) (pp. 1392–1397).
Zurück zum Zitat Liu, C. K. (2009). Dextrous manipulation from a grasping pose. ACM Transactions on Graphics (TOG), 28(3), 59. Liu, C. K. (2009). Dextrous manipulation from a grasping pose. ACM Transactions on Graphics (TOG), 28(3), 59.
Zurück zum Zitat Luo, J., & Hauser, K. (2012). Interactive generation of dynamically feasible robot trajectories from sketches using temporal mimicking. In IEEE international conference on robotics and automation (ICRA) (pp. 3665–3670). Luo, J., & Hauser, K. (2012). Interactive generation of dynamically feasible robot trajectories from sketches using temporal mimicking. In IEEE international conference on robotics and automation (ICRA) (pp. 3665–3670).
Zurück zum Zitat Luo, J., & Hauser, K. (2015). Robust trajectory optimization under frictional contact with iterative learning. In Robotics: Science and systems. Luo, J., & Hauser, K. (2015). Robust trajectory optimization under frictional contact with iterative learning. In Robotics: Science and systems.
Zurück zum Zitat Lynch, K. M., & Mason, M. T. (1996). Dynamic underactuated nonprehensile manipulation. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 2, pp. 889–896). IEEE. Lynch, K. M., & Mason, M. T. (1996). Dynamic underactuated nonprehensile manipulation. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 2, pp. 889–896). IEEE.
Zurück zum Zitat Mordatch, I., Popović, Z., & Todorov, E. (2012). Contact-invariant optimization for hand manipulation. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation (pp. 137–144). Eurographics Association. Mordatch, I., Popović, Z., & Todorov, E. (2012). Contact-invariant optimization for hand manipulation. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation (pp. 137–144). Eurographics Association.
Zurück zum Zitat Nguyen-Tuong, D., & Peters, J. (2011). Model learning for robot control: A survey. Cognitive processing, 12(4), 319–340.CrossRef Nguyen-Tuong, D., & Peters, J. (2011). Model learning for robot control: A survey. Cognitive processing, 12(4), 319–340.CrossRef
Zurück zum Zitat Pham, Q.-C., Caron, S., Lertkultanon, P., & Nakamura, Y. (2014). Planning truly dynamic motions: Path-velocity decomposition revisited. arXiv preprint arXiv:1411.4045. Pham, Q.-C., Caron, S., Lertkultanon, P., & Nakamura, Y. (2014). Planning truly dynamic motions: Path-velocity decomposition revisited. arXiv preprint arXiv:​1411.​4045.
Zurück zum Zitat Posa, M., & Tedrake, R. (2012). Direct trajectory optimization of rigid body dynamical systems through contact. In Workshop on the algorithmic foundations of robotics. Posa, M., & Tedrake, R. (2012). Direct trajectory optimization of rigid body dynamical systems through contact. In Workshop on the algorithmic foundations of robotics.
Zurück zum Zitat Posa, M., Cantu, C., & Tedrake, R. (2014). A direct method for trajectory optimization of rigid bodies through contact. The International Journal of Robotics Research, 33(1), 69–81.CrossRef Posa, M., Cantu, C., & Tedrake, R. (2014). A direct method for trajectory optimization of rigid bodies through contact. The International Journal of Robotics Research, 33(1), 69–81.CrossRef
Zurück zum Zitat Schaal, S., & Atkeson, C. G. (2010). Learning control in robotics. IEEE Robotics & Automation Magazine, 17(2), 20–29.CrossRef Schaal, S., & Atkeson, C. G. (2010). Learning control in robotics. IEEE Robotics & Automation Magazine, 17(2), 20–29.CrossRef
Zurück zum Zitat Slotine, J.-J. E., & Yang, H. S. (1989). Improving the efficiency of time-optimal path-following algorithms. IEEE Transactions on Robotics and Automation, 5(1), 118–124. doi:10.1109/70.88024. ISSN 1042-296X.CrossRef Slotine, J.-J. E., & Yang, H. S. (1989). Improving the efficiency of time-optimal path-following algorithms. IEEE Transactions on Robotics and Automation, 5(1), 118–124. doi:10.​1109/​70.​88024. ISSN 1042-296X.CrossRef
Zurück zum Zitat Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., & Diehl, M. (2009). Time-optimal path tracking for robots: A convex optimization approach. IEEE Transactions on Automatic Control, 54(10), 2318–2327. doi:10.1109/TAC.2009.2028959. ISSN 0018-9286.MathSciNetCrossRef Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., & Diehl, M. (2009). Time-optimal path tracking for robots: A convex optimization approach. IEEE Transactions on Automatic Control, 54(10), 2318–2327. doi:10.​1109/​TAC.​2009.​2028959. ISSN 0018-9286.MathSciNetCrossRef
Zurück zum Zitat von Stryk, O., & Bulirsch, R. (1992). Direct and indirect methods for trajectory optimization. Annals of Operations Research, 37(1), 357–373.MathSciNetCrossRefMATH von Stryk, O., & Bulirsch, R. (1992). Direct and indirect methods for trajectory optimization. Annals of Operations Research, 37(1), 357–373.MathSciNetCrossRefMATH
Metadaten
Titel
Robust trajectory optimization under frictional contact with iterative learning
verfasst von
Jingru Luo
Kris Hauser
Publikationsdatum
25.03.2017
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 6/2017
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9629-x

Weitere Artikel der Ausgabe 6/2017

Autonomous Robots 6/2017 Zur Ausgabe

Neuer Inhalt