Skip to main content
Erschienen in: Automatic Control and Computer Sciences 2/2020

01.03.2020

Robustness Analysis of Modified Incremental Nonlinear Dynamic Inversion for Small UAVs

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The work presented in this research focuses on the design of a robust nonlinear flight control system for a small fixed-wing UAV against uncertainties and external disturbances. Toward this objective, an integrated UAV waypoints guidance scheme based on Carrot Chasing guidance law (CC) is adopted. The designed attitude angles guidance law is applied to the flight control loop. Nonlinear Dynamic Inversion (NDI) awards the flight control system researchers a straight forward method of deriving control laws for nonlinear systems. The control inputs are used to eliminate unwanted terms in the equations of motion using negative feedback of these terms. However precise dynamic models may not be available and that leads to system instability in the presence of external disturbances or model uncertainties. Therefore a modified incremental dynamic inversion (MINDI) is presented to compensate the model uncertainties and increase robustness and system behavior when compared to incremental NDI. Simulation results showed that the MINDI flight control system is robust against wind disturbances and model mismatch which leads to superior path following performance.
Literatur
1.
Zurück zum Zitat Mothes, F., Trajectory planning in time-varying adverse weather for fixed-wing aircraft using robust model predictive control, Aerospace, 2019, vol. 6, no. 6, p. 68.CrossRef Mothes, F., Trajectory planning in time-varying adverse weather for fixed-wing aircraft using robust model predictive control, Aerospace, 2019, vol. 6, no. 6, p. 68.CrossRef
2.
Zurück zum Zitat Kaminer, I., Hallberg, E., Silvestre, C., and Pascoal, A., Trajectory tracking for autonomous vehicles: An integrated approach to guidance and control, J. Guid. Control Dyn., 1998, vol. 21, no. 1. Kaminer, I., Hallberg, E., Silvestre, C., and Pascoal, A., Trajectory tracking for autonomous vehicles: An integrated approach to guidance and control, J. Guid. Control Dyn., 1998, vol. 21, no. 1.
3.
Zurück zum Zitat Sujit, P., Saripalli, B., and Sousa, S., Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles, IEEE Control Syst., 2014, vol. 34, pp. 42–59.MathSciNet Sujit, P., Saripalli, B., and Sousa, S., Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles, IEEE Control Syst., 2014, vol. 34, pp. 42–59.MathSciNet
4.
Zurück zum Zitat Enomoto, K., Yamasaki, T., Takano, H., and Baba, Y., Guidance and control system design for chase UAV, AIAA Guidance, Navigation and Control Conference and Exhibit, 2013. Enomoto, K., Yamasaki, T., Takano, H., and Baba, Y., Guidance and control system design for chase UAV, AIAA Guidance, Navigation and Control Conference and Exhibit, 2013.
5.
Zurück zum Zitat Ambrosino, G., Ariola, M., and Ciniglio, U., Path generation and tracking in 3-D for UAVs, IEEE Trans. Control Syst. Technol., 2009, vol. 17, no. 4, pp. 980–988.CrossRef Ambrosino, G., Ariola, M., and Ciniglio, U., Path generation and tracking in 3-D for UAVs, IEEE Trans. Control Syst. Technol., 2009, vol. 17, no. 4, pp. 980–988.CrossRef
6.
Zurück zum Zitat Ehab, S., Zhang, W., and Mohsen, A., Design and analysis of a robust UAV flight guidance and control system based on a modified nonlinear dynamic inversion, Appl. Sci., 2019, vol. 9, no. 17, p. 3600.CrossRef Ehab, S., Zhang, W., and Mohsen, A., Design and analysis of a robust UAV flight guidance and control system based on a modified nonlinear dynamic inversion, Appl. Sci., 2019, vol. 9, no. 17, p. 3600.CrossRef
7.
Zurück zum Zitat Horn, J.F., Non-linear dynamic inversion control design for rotorcraft, Aerospace, 2019, vol. 6, no. 3, p. 38.CrossRef Horn, J.F., Non-linear dynamic inversion control design for rotorcraft, Aerospace, 2019, vol. 6, no. 3, p. 38.CrossRef
8.
Zurück zum Zitat Sujit, P., Saripalli, B., and Sousa, S., An evaluation of UAV path following algorithms, Control Conference, 2013. Sujit, P., Saripalli, B., and Sousa, S., An evaluation of UAV path following algorithms, Control Conference, 2013.
9.
Zurück zum Zitat Rhee, I., Park, S., and Ryoo, C., A tight path following algorithm of an UAS based on PID control, SICE Conference, 2010. Rhee, I., Park, S., and Ryoo, C., A tight path following algorithm of an UAS based on PID control, SICE Conference, 2010.
10.
Zurück zum Zitat Cunha, R., Silvestre, C., and Pascoal, A., A path following controller for model-scale helicopters, European Control Conference, 2015. Cunha, R., Silvestre, C., and Pascoal, A., A path following controller for model-scale helicopters, European Control Conference, 2015.
11.
Zurück zum Zitat Safwat, E., Zhang, W., Wu, M., et al., Robust path following controller for unmanned aerial vehicle based on carrot chasing guidance law using dynamic inversion, 2018 18th International Conference on Control, Automation and Systems (ICCAS), 2018, pp. 1444–1450. Safwat, E., Zhang, W., Wu, M., et al., Robust path following controller for unmanned aerial vehicle based on carrot chasing guidance law using dynamic inversion, 2018 18th International Conference on Control, Automation and Systems (ICCAS), 2018, pp. 1444–1450.
12.
Zurück zum Zitat Kamal, A.M., Bayoumy, A.M., and Elshabka, A.M., Modeling and flight simulation of unmanned aerial vehicle enhanced with fine tuning, Aerosp. Sci. Technol., 2016, vol. 51, pp. 106–117.CrossRef Kamal, A.M., Bayoumy, A.M., and Elshabka, A.M., Modeling and flight simulation of unmanned aerial vehicle enhanced with fine tuning, Aerosp. Sci. Technol., 2016, vol. 51, pp. 106–117.CrossRef
13.
Zurück zum Zitat Beard, R.W. and Mclain, T.W., Small Unmanned Aircraft:Theory and Practice, 2012. Beard, R.W. and Mclain, T.W., Small Unmanned Aircraft:Theory and Practice, 2012.
14.
Zurück zum Zitat Niu, H., Yu, L., Savvaris, A., and Tsourdos, A., Efficient path following algorithm for unmanned surface vehicle, OCEANS 2016, Shanghai, 2016. Niu, H., Yu, L., Savvaris, A., and Tsourdos, A., Efficient path following algorithm for unmanned surface vehicle, OCEANS 2016, Shanghai, 2016.
15.
Zurück zum Zitat Slotine, J., Li, W., and Hall, P., Applied Nonlinear Control, Pearson Schweiz Ag., 1990. Slotine, J., Li, W., and Hall, P., Applied Nonlinear Control, Pearson Schweiz Ag., 1990.
16.
Zurück zum Zitat Kamal, A.M., Bayoumy, A.M., and Elshabka, A.M., Modeling and flight simulation of unmanned aerial vehicle enhanced with fine tuning, Aerosp. Sci. Technol., 2016, vol. 51, pp. 106–117.CrossRef Kamal, A.M., Bayoumy, A.M., and Elshabka, A.M., Modeling and flight simulation of unmanned aerial vehicle enhanced with fine tuning, Aerosp. Sci. Technol., 2016, vol. 51, pp. 106–117.CrossRef
17.
Zurück zum Zitat Seyedipour, S.H., Jegarkandi, M.F., and Shamaghdari, S., Nonlinear integrated guidance and control based on adaptive backstepping scheme, Aircr. Eng. Aerosp. Technol., 2017, vol. 89, no. 3, pp. 415–424.CrossRef Seyedipour, S.H., Jegarkandi, M.F., and Shamaghdari, S., Nonlinear integrated guidance and control based on adaptive backstepping scheme, Aircr. Eng. Aerosp. Technol., 2017, vol. 89, no. 3, pp. 415–424.CrossRef
18.
Zurück zum Zitat Liu Jinglong, Zhang Weiguo, and Liu Xiaoxiong, Gust response stabilization for rigid aircraft with multi-control-effectors based on a novel integrated control scheme, Aerosp. Sci. Technol., 2018, vol. 79, pp. 625–635.CrossRef Liu Jinglong, Zhang Weiguo, and Liu Xiaoxiong, Gust response stabilization for rigid aircraft with multi-control-effectors based on a novel integrated control scheme, Aerosp. Sci. Technol., 2018, vol. 79, pp. 625–635.CrossRef
19.
Zurück zum Zitat Chen, Q., Wang, X., and Yang, J., Trajectory-following guidance based on a virtual target and an angle constraint, Aerosp. Sci. Technol., 2019, vol. 87, pp. 448–458.CrossRef Chen, Q., Wang, X., and Yang, J., Trajectory-following guidance based on a virtual target and an angle constraint, Aerosp. Sci. Technol., 2019, vol. 87, pp. 448–458.CrossRef
20.
Zurück zum Zitat Ali, S.U., Samar, R., and Shah, M.Z., Lateral guidance and control of UAVs using second-order sliding modes, Aerosp. Sci. Technol., 2016, vol. 49, pp. 88–100.CrossRef Ali, S.U., Samar, R., and Shah, M.Z., Lateral guidance and control of UAVs using second-order sliding modes, Aerosp. Sci. Technol., 2016, vol. 49, pp. 88–100.CrossRef
21.
Zurück zum Zitat Li, J., Chen, S., and Li, C., Adaptive control of underactuated flight vehicles with moving mass, Aerosp. Sci. Technol., 2019, vol. 85, pp. 75–84.CrossRef Li, J., Chen, S., and Li, C., Adaptive control of underactuated flight vehicles with moving mass, Aerosp. Sci. Technol., 2019, vol. 85, pp. 75–84.CrossRef
22.
Zurück zum Zitat Su, Z., Li, C., and Wang, H., Barrier Lyapunov function-based robust flight control for the ultra-low altitude airdrop under airflow disturbances, Aerosp. Sci. Technol., 2019, vol. 84, pp. 375–386.CrossRef Su, Z., Li, C., and Wang, H., Barrier Lyapunov function-based robust flight control for the ultra-low altitude airdrop under airflow disturbances, Aerosp. Sci. Technol., 2019, vol. 84, pp. 375–386.CrossRef
Metadaten
Titel
Robustness Analysis of Modified Incremental Nonlinear Dynamic Inversion for Small UAVs
Publikationsdatum
01.03.2020
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 2/2020
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411620020078

Weitere Artikel der Ausgabe 2/2020

Automatic Control and Computer Sciences 2/2020 Zur Ausgabe

Neuer Inhalt