Skip to main content

2024 | OriginalPaper | Buchkapitel

RobustSsF: Robust Missing Modality Brain Tumor Segmentation with Self-supervised Learning-Based Scenario-Specific Fusion

verfasst von : Jeongwon Lee, Dae-Shik Kim

Erschienen in: Machine Learning for Multimodal Healthcare Data

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All modalities of Magnetic Resonance Imaging (MRI) have an essential role in diagnosing brain tumors, but there are some challenges posed by missing or incomplete modalities in multimodal MRI. Existing models have failed to achieve robust performance across all scenarios. To address this issue, this paper proposes a novel 4encoder-4decoder architecture that incorporates both “dedicated” and “single” models. Our model includes multiple Scenario-specific Fusion (SsF) decoders that construct different features depending on the missing modality scenarios. To train our model, we introduce a novel self-supervised learning-based loss function called Couple Regularization (CReg) to achieve robust learning and the Lifelong Learning Strategy (LLS) to enhance model performance. The experimental results on BraTS2018 demonstrate that RobustSsF has successfully improved robustness by reducing standard deviations from 12 times to 76 times lower, also achieving state-of-the-art results in all scenarios when the T1ce modality is missing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Azad, R., Khosravi, N., Dehghanmanshadi, M., Cohen-Adad, J., Merhof, D.: Medical image segmentation on MRI images with missing modalities: a review (2022) Azad, R., Khosravi, N., Dehghanmanshadi, M., Cohen-Adad, J., Merhof, D.: Medical image segmentation on MRI images with missing modalities: a review (2022)
2.
Zurück zum Zitat Azad, R., Khosravi, N., Merhof, D.: SMU-net: style matching U-net for brain tumor segmentation with missing modalities (2022) Azad, R., Khosravi, N., Merhof, D.: SMU-net: style matching U-net for brain tumor segmentation with missing modalities (2022)
3.
Zurück zum Zitat Chen, C., Dou, Q., Jin, Y., Chen, H., Qin, J., Heng, P.A.: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion (2020) Chen, C., Dou, Q., Jin, Y., Chen, H., Qin, J., Heng, P.A.: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion (2020)
4.
Zurück zum Zitat Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​49CrossRef
5.
Zurück zum Zitat Ding, Y., Yu, X., Yang, Y.: RFnet: region-aware fusion network for incomplete multi-modal brain tumor segmentation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3955–3964 (2021) Ding, Y., Yu, X., Yang, Y.: RFnet: region-aware fusion network for incomplete multi-modal brain tumor segmentation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3955–3964 (2021)
7.
Zurück zum Zitat Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: Hemis: hetero-modal image segmentation. CoRR abs/1607.05194 (2016) Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: Hemis: hetero-modal image segmentation. CoRR abs/1607.05194 (2016)
8.
Zurück zum Zitat Hu, M., et al.: Knowledge distillation from multi-modal to mono-modal segmentation networks (2021) Hu, M., et al.: Knowledge distillation from multi-modal to mono-modal segmentation networks (2021)
9.
Zurück zum Zitat Li, Z., Hoiem, D.: Learning without forgetting (2016) Li, Z., Hoiem, D.: Learning without forgetting (2016)
11.
Zurück zum Zitat Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation (2016) Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation (2016)
12.
Zurück zum Zitat Serrà, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task (2018) Serrà, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task (2018)
13.
Zurück zum Zitat Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay (2017) Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay (2017)
14.
Zurück zum Zitat Wang, Y., et al.: ACN: adversarial co-training network for brain tumor segmentation with missing modalities (2021) Wang, Y., et al.: ACN: adversarial co-training network for brain tumor segmentation with missing modalities (2021)
15.
Zurück zum Zitat Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks (2017) Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks (2017)
16.
Zurück zum Zitat Zhang, Y., et al.: mmformer: Multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation (2022) Zhang, Y., et al.: mmformer: Multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation (2022)
18.
Zurück zum Zitat Zhou, T., Ruan, S., Hu, H.: A literature survey of MR-based brain tumor segmentation with missing modalities. Comput. Med. Imaging Graph. 104, 102167 (2023)CrossRef Zhou, T., Ruan, S., Hu, H.: A literature survey of MR-based brain tumor segmentation with missing modalities. Comput. Med. Imaging Graph. 104, 102167 (2023)CrossRef
Metadaten
Titel
RobustSsF: Robust Missing Modality Brain Tumor Segmentation with Self-supervised Learning-Based Scenario-Specific Fusion
verfasst von
Jeongwon Lee
Dae-Shik Kim
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47679-2_4

Premium Partner