Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.01.2014 | Original Article | Ausgabe 1/2014

International Journal of Computer Assisted Radiology and Surgery 1/2014

ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 1/2014
Autoren:
Bowen Song, Guopeng Zhang, Wei Zhu, Zhengrong Liang

Abstract

Purpose

   Computer-aided detection and diagnosis (CAD) of colonic polyps always faces the challenge of classifying imbalanced data. In this paper, three new operating point selection strategies based on receiver operating characteristic curve are proposed to address the problem.

Methods

   Classification on imbalanced data performs inferiorly because of a major reason that the best differentiation threshold shifts due to the degree of data imbalance. To address this decision threshold shifting issue, three operating point selection strategies, i.e., shortest distance, harmonic mean and anti-harmonic mean, are proposed and their performances are investigated.

Results

   Experiments were conducted on a class-imbalanced database, which contains 64 polyps in 786 polyp candidates. Support vector machine (SVM) and random forests (RFs) were employed as basic classifiers. Two imbalanced data correcting techniques, i.e., cost-sensitive learning and training data down sampling, were applied to SVM and RFs, and their performances were compared with the proposed strategies. Comparing to the original thresholding method, i.e., 0.488 sensitivity and 0.986 specificity for RFs and 0.526 sensitivity and 0.977 specificity for SVM, our strategies achieved more balanced results, which are around 0.89 sensitivity and 0.92 specificity for RFs and 0.88 sensitivity and 0.90 specificity for SVM. Meanwhile, their performance remained at the same level regardless of whether other correcting methods are used.

Conclusions

   Based on the above experiments, the gain of our proposed strategies is noticeable: the sensitivity improved from 0.5 to around 0.88 for RFs and 0.89 for SVM while remaining a relatively high level of specificity, i.e., 0.92 for RFs and 0.90 for SVM. The performance of our proposed strategies was adaptive and robust with different levels of imbalanced data. This indicates a feasible solution to the shifting problem for favorable sensitivity and specificity in CAD of polyps from imbalanced data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2014

International Journal of Computer Assisted Radiology and Surgery 1/2014 Zur Ausgabe

Premium Partner

    Bildnachweise