Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Rock Physics Modeling in Conventional Reservoirs

verfasst von : Dario Grana

Erschienen in: New Frontiers in Oil and Gas Exploration

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Seismic reservoir characterization focuses on the interpretation of elastic attributes, such as seismic velocities and impedances, estimated from geophysical data such as surface seismic, crosswell seismic, and well log data. Elastic attributes depend on rock and fluid properties. The discipline of rock physics investigates the physical relations between petrophysical properties of porous rocks and their elastic response. In this chapter, we review the most common rock physics models for conventional hydrocarbon reservoirs. Rock physics models are commonly used to study the effect of variations in porosity, lithology, fluid saturation, and other petrophysical properties in reservoir rocks and the changes in the corresponding elastic and seismic response. These models can then be used to quantitatively interpret geophysical data and build reservoir models conditioned by well log and seismic data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aki, K., & Richards, P. G. (1980). Quantitative seismology. North Bay, ON: W.H. Freeman & Co. Aki, K., & Richards, P. G. (1980). Quantitative seismology. North Bay, ON: W.H. Freeman & Co.
2.
Zurück zum Zitat Yilmaz, ø. (2001). Seismic data analysis, processing, inversion and interpretation of seismic data (2nd ed., p. 2027). Tulsa, OK: Society of Exploration Geophysicists. ISBN-13: 978–1560800941, ISBN-10: 1560800941. Yilmaz, ø. (2001). Seismic data analysis, processing, inversion and interpretation of seismic data (2nd ed., p. 2027). Tulsa, OK: Society of Exploration Geophysicists. ISBN-13: 978–1560800941, ISBN-10: 1560800941.
3.
Zurück zum Zitat Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook. Cambridge: Cambridge University Press.CrossRef Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook. Cambridge: Cambridge University Press.CrossRef
4.
Zurück zum Zitat Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21, 41–70.CrossRef Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21, 41–70.CrossRef
5.
Zurück zum Zitat Raymer, L. L., Hunt, E. R., & Gardner, J. S. (1980). An improved sonic transit time-to-porosity transform: Transactions of SPWLA, Paper P. Raymer, L. L., Hunt, E. R., & Gardner, J. S. (1980). An improved sonic transit time-to-porosity transform: Transactions of SPWLA, Paper P.
6.
Zurück zum Zitat Han, D.-H. (1986). Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments: Ph.D. dissertation, Stanford University. Han, D.-H. (1986). Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments: Ph.D. dissertation, Stanford University.
7.
Zurück zum Zitat Bourbié, T., Coussy, O., & Zinszner, B. (1987). Acoustics of porous media. Houston: Gulf. Bourbié, T., Coussy, O., & Zinszner, B. (1987). Acoustics of porous media. Houston: Gulf.
8.
Zurück zum Zitat Zimmerman, R. W. (1991). Compressibility of Sandstones. Amsterdam: Elsevier. Zimmerman, R. W. (1991). Compressibility of Sandstones. Amsterdam: Elsevier.
9.
Zurück zum Zitat Nur, A., Marion, D., & Yin, H. (1991). Wave velocities in sediments. In J. M. Hovem, M. D. Richardson, & R. D. Stoll (Eds.), Shear waves in marine sediments (pp. 131–140). Berlin: Kluwer Academic Publishers.CrossRef Nur, A., Marion, D., & Yin, H. (1991). Wave velocities in sediments. In J. M. Hovem, M. D. Richardson, & R. D. Stoll (Eds.), Shear waves in marine sediments (pp. 131–140). Berlin: Kluwer Academic Publishers.CrossRef
10.
Zurück zum Zitat Avseth, P., Mukerji, T., & Mavko, G. (2005). Quantitative seismic interpretation. Cambridge: Cambridge University Press.CrossRef Avseth, P., Mukerji, T., & Mavko, G. (2005). Quantitative seismic interpretation. Cambridge: Cambridge University Press.CrossRef
11.
Zurück zum Zitat Dvorkin, J., Gutierrez, M., & Grana, D. (2014). Seismic reflections of rock properties. Cambridge: Cambridge University Press.CrossRef Dvorkin, J., Gutierrez, M., & Grana, D. (2014). Seismic reflections of rock properties. Cambridge: Cambridge University Press.CrossRef
12.
Zurück zum Zitat Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 571–581.CrossRef Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 571–581.CrossRef
13.
Zurück zum Zitat Greenberg, M. L., & Castagna, J. P. (1992). Shear-wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications. Geophysical Prospecting, 40, 195–209.CrossRef Greenberg, M. L., & Castagna, J. P. (1992). Shear-wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications. Geophysical Prospecting, 40, 195–209.CrossRef
14.
Zurück zum Zitat Vernik, L., Fisher, D., & Bahret, S. (2002). Estimation of net-to-gross from P and S impedance in deepwater turbidites. The Leading Edge, 21, 380–387.CrossRef Vernik, L., Fisher, D., & Bahret, S. (2002). Estimation of net-to-gross from P and S impedance in deepwater turbidites. The Leading Edge, 21, 380–387.CrossRef
15.
Zurück zum Zitat Batzle, M., & Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57, 1396–1408.CrossRef Batzle, M., & Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57, 1396–1408.CrossRef
16.
Zurück zum Zitat Brie, A., Pampuri, F., Marsala, A. F., & Meazza, O. (1995). Shear sonic interpretation in gas-bearing sands. SPE, 30595, 701–710. Brie, A., Pampuri, F., Marsala, A. F., & Meazza, O. (1995). Shear sonic interpretation in gas-bearing sands. SPE, 30595, 701–710.
17.
Zurück zum Zitat Nur, A., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Expanded Abstracts, 878. Nur, A., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Expanded Abstracts, 878.
18.
Zurück zum Zitat Dvorkin, J., Nur, A., & Yin, H. (1994). Effective properties of cemented granular materials. Mechanics of Materials, 18, 351–366.CrossRef Dvorkin, J., Nur, A., & Yin, H. (1994). Effective properties of cemented granular materials. Mechanics of Materials, 18, 351–366.CrossRef
19.
Zurück zum Zitat Dvorkin, J., & Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics, 61, 1363–1370.CrossRef Dvorkin, J., & Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics, 61, 1363–1370.CrossRef
20.
Zurück zum Zitat Gal, D., Dvorkin, J., & Nur, A. (1998). A physical model for porosity reduction in sandstones. Geophysics, 63, 454–459.CrossRef Gal, D., Dvorkin, J., & Nur, A. (1998). A physical model for porosity reduction in sandstones. Geophysics, 63, 454–459.CrossRef
21.
Zurück zum Zitat Kuster, G. T., & Toksöz, M. N. (1974). Velocity and attenuation of seismic waves in two-phase media. Geophysics, 39, 587–618.CrossRef Kuster, G. T., & Toksöz, M. N. (1974). Velocity and attenuation of seismic waves in two-phase media. Geophysics, 39, 587–618.CrossRef
22.
Zurück zum Zitat Berryman, J. G. (1995). Mixture theories for rock properties. In T. J. Ahrens (Ed.), Rock physics and phase relations: A handbook of physical constants (pp. 205–228). Washington: American Geophysical Union.CrossRef Berryman, J. G. (1995). Mixture theories for rock properties. In T. J. Ahrens (Ed.), Rock physics and phase relations: A handbook of physical constants (pp. 205–228). Washington: American Geophysical Union.CrossRef
23.
Zurück zum Zitat Mavko, G., Chan, C., & Mukerji, T. (1995). Fluid substitution: Estimating changes in VP without knowing VS. Geophysics, 60, 1750–1755.CrossRef Mavko, G., Chan, C., & Mukerji, T. (1995). Fluid substitution: Estimating changes in VP without knowing VS. Geophysics, 60, 1750–1755.CrossRef
24.
Zurück zum Zitat Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in Berea and Michigan sandstones. Geophysics, 62, 1163–1176.CrossRef Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in Berea and Michigan sandstones. Geophysics, 62, 1163–1176.CrossRef
25.
Zurück zum Zitat MacBeth, C. (2004). A classification for the pressure-sensitivity properties of a sandstone rock frame. Geophysics, 69, 497–510.CrossRef MacBeth, C. (2004). A classification for the pressure-sensitivity properties of a sandstone rock frame. Geophysics, 69, 497–510.CrossRef
26.
Zurück zum Zitat Darling, T. (2005). Well logging and formation evaluation. Amsterdam: Elsevier Inc. Darling, T. (2005). Well logging and formation evaluation. Amsterdam: Elsevier Inc.
27.
Zurück zum Zitat Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists. New York: Springer.CrossRef Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists. New York: Springer.CrossRef
28.
Zurück zum Zitat Gomez, C. (2009). Reservoir characterization combining elastic velocities and electrical resistivity measurements: Ph.D. dissertation, Stanford University. Gomez, C. (2009). Reservoir characterization combining elastic velocities and electrical resistivity measurements: Ph.D. dissertation, Stanford University.
29.
Zurück zum Zitat Worthington, P. F. (1985). Evolution of shaley sand concepts in reservoir evaluation. Log Analyst, 26, 23–40. Worthington, P. F. (1985). Evolution of shaley sand concepts in reservoir evaluation. Log Analyst, 26, 23–40.
30.
Zurück zum Zitat Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation (p. 352). SIAM. ISBN-13: 978–0898715729, ISBN-10: 0898715725. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation (p. 352). SIAM. ISBN-13: 978–0898715729, ISBN-10: 0898715725.
31.
Zurück zum Zitat Doyen, P. (2007). Seismic reservoir characterization: An earth modelling perspective (p. 255). EAGE Publications. ISBN 978-90-73781-77-1. Doyen, P. (2007). Seismic reservoir characterization: An earth modelling perspective (p. 255). EAGE Publications. ISBN 978-90-73781-77-1.
32.
Zurück zum Zitat Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. Geophysics, 68, 185–198.CrossRef Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. Geophysics, 68, 185–198.CrossRef
33.
Zurück zum Zitat Sen, M. K., & Stoffa, P. L. (2013). Global optimization methods in geophysical inversion. Cambridge: Cambridge University Press.CrossRefMATH Sen, M. K., & Stoffa, P. L. (2013). Global optimization methods in geophysical inversion. Cambridge: Cambridge University Press.CrossRefMATH
34.
Zurück zum Zitat Chen, J., Hoversten, M., Vasco, D. W., Rubin, Y., & Hou, Z. (2007). Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling based stochastic model. Geophysics, 72, WA85–WA95.CrossRef Chen, J., Hoversten, M., Vasco, D. W., Rubin, Y., & Hou, Z. (2007). Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling based stochastic model. Geophysics, 72, WA85–WA95.CrossRef
35.
Zurück zum Zitat MacGregor, L. (2012). Integrating seismic CSEM, and well-log data for reservoir characterization. The Leading Edge, 31, 268–277. MacGregor, L. (2012). Integrating seismic CSEM, and well-log data for reservoir characterization. The Leading Edge, 31, 268–277.
36.
Zurück zum Zitat Buland, A., & Kolbjørnsen, H. (2012). Bayesian inversion of CSEM and magnetotelluric data. Geophysics, 77, E33–E42.CrossRef Buland, A., & Kolbjørnsen, H. (2012). Bayesian inversion of CSEM and magnetotelluric data. Geophysics, 77, E33–E42.CrossRef
37.
Zurück zum Zitat Grana, D., & Della Rossa, E. (2010). Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 75, O21–O37.CrossRef Grana, D., & Della Rossa, E. (2010). Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 75, O21–O37.CrossRef
38.
Zurück zum Zitat Rimstad, K., & Omre, H. (2010). Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics, 75, R93–R108.CrossRef Rimstad, K., & Omre, H. (2010). Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics, 75, R93–R108.CrossRef
39.
Zurück zum Zitat Mukerji, T., Jørstad, A., Avseth, P., Mavko, G., & Granli, J. R. (2001). Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics, 66, 988–1001.CrossRef Mukerji, T., Jørstad, A., Avseth, P., Mavko, G., & Granli, J. R. (2001). Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics, 66, 988–1001.CrossRef
40.
Zurück zum Zitat Eidsvik, J., Avseth, P., Omre, H., Mukerji, T., & Mavko, G. (2004). Stochastic reservoir characterization using prestack seismic data. Geophysics, 69, 978–993.CrossRef Eidsvik, J., Avseth, P., Omre, H., Mukerji, T., & Mavko, G. (2004). Stochastic reservoir characterization using prestack seismic data. Geophysics, 69, 978–993.CrossRef
41.
Zurück zum Zitat Bachrach, R. (2006). Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 71, O53–O63.CrossRef Bachrach, R. (2006). Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 71, O53–O63.CrossRef
42.
Zurück zum Zitat Sengupta, M., & Bachrach, R. (2007). Uncertainty in seismic-based pay volume estimation: Analysis using rock physics and Bayesian statistics. The Leading Edge, 24, 184–189.CrossRef Sengupta, M., & Bachrach, R. (2007). Uncertainty in seismic-based pay volume estimation: Analysis using rock physics and Bayesian statistics. The Leading Edge, 24, 184–189.CrossRef
43.
Zurück zum Zitat Spikes, K., Mukerji, T., Dvorkin, J., & Mavko, G. (2008). Probabilistic seismic inversion based on rock-physics models. Geophysics, 72, R87–R97.CrossRef Spikes, K., Mukerji, T., Dvorkin, J., & Mavko, G. (2008). Probabilistic seismic inversion based on rock-physics models. Geophysics, 72, R87–R97.CrossRef
44.
Zurück zum Zitat Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89. Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.
Metadaten
Titel
Rock Physics Modeling in Conventional Reservoirs
verfasst von
Dario Grana
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-40124-9_4