Skip to main content
Erschienen in: Energy Efficiency 2/2017

06.08.2016 | Original Article

Role of endogenous energy efficiency improvement in global climate change mitigation

verfasst von: Hongbo Duan, Gupeng Zhang, Ying Fan, Shouyang Wang

Erschienen in: Energy Efficiency | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Improving the energy efficiency of conventional energy services is an essential way to cope with global CO2 emissions mitigation. To date, energy efficiency improvement (EEI) has been broadly introduced exogenously in integrated assessment models (IAMs) by virtue of the autonomous energy efficiency improvement (AEEI) coefficient; however, it is usually good at capturing the EEI driven by non-price factors, while weak in describing the EEI induced by policy incentives. In this paper, we introduce an endogenous EEI (EEEI) mechanism in an IAM, called E3METL, to explore the impacts of EEEI on the global macro-economy, CO2 emission paths, and timing of carbon mitigations. The results reveal that (1) introducing EEEI significantly improves gross world product (GWP) gains, and this positive effect is partly offset when carbon restriction policies are implemented; (2) R&D investment dedicated to enhance energy efficiency limits R&D expenditures for other alternative technologies, and this effect will impede the development of non-fossil technologies; (3) EEEI may perform as one of supporting factors to delay the actions of carbon reduction; moreover, the introduction of EEEI lowers the optimal carbon tax level by 7.8 % on average, as compared to the no EEEI case.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
According to Fisher-Vanden et al. (2006), around two thirds of energy-consumption changes can be attributed to price factors, while the rest (one third) comes from non-price factors. However, AEEI usually covers the energy efficiency improvement resulting from non-price factors, while captures few EEI induced by price, particularly by policy incentives, which could be largely responsible for the possible deviation.
 
2
CES method is first proposed in Arrow et al. (1961), and the general formula is Y = A(αK ρ  + βL ρ )−1/ρ , here ρ ≤ 1and ρ ≠ 0. We could obtain two representative conclusions from this formula: first, when ρ → 0, it reduces to the classical Cobb-Douglas production function; second, the elasticity of substitution between capital stock and labor factor is constant and equals to 1/(1 − ρ).
 
3
Endogenous energy efficiency is enhanced through the substitution of knowledge capital for carbon services, and this substitution may be driven by productivity improvement of current production processes, introduction of more efficient technology, or the adoption of some carbon-control measures (Popp 2004).
 
4
Empirical studies suggest that returns to energy R&D are diminishing over time (Popp 2001). On this basis, the function form of the innovation possibility frontier should be satisfied with the following two conditions: first, ∂IPF t /∂RD ee , t  > 0 and second, ∂2 IPF t /∂KDE t RD ee , t  < 0 (Popp 2004).
 
5
In general, C f , t /C i , t show a wide frequency distribution; hence, the ratio here means the mean value, so does the relative price P f , t (Anderson and Winne 2004).
 
6
In this work, non-carbon energy is measured by carbon ton equivalent (CTE), which can be converted in terms of the equivalent calorific value between fossil and non-fossil energy; therefore, $/tC is also employed to measure the cost of non-fossil energy (Gerlagh et al. 2003; Popp 2004).
 
7
We can observe from Fig. 5 that R&D investment on energy efficiency is several fold higher than that on non-fossil technologies. This is consistent with the reality, actually, the amount of R&D investment on new energy technologies only accounts for about 10 % of total energy R&D expenditures, which implies that nearly 90 % of energy R&D investment relates to energy efficiency improvement of conventional fuels (REN21 2015).
 
Literatur
Zurück zum Zitat Anderson, D. (1997). Renewable energy technology and policy for development. Annual Review of Energy and the Environment, 22, 187–215.CrossRef Anderson, D. (1997). Renewable energy technology and policy for development. Annual Review of Energy and the Environment, 22, 187–215.CrossRef
Zurück zum Zitat Anderson, D., & Winne, S. (2004). Modelling innovation and threshold effects in climate change mitigation. In Working paper 59. Tyndall: Centre for Climate Change Research. Anderson, D., & Winne, S. (2004). Modelling innovation and threshold effects in climate change mitigation. In Working paper 59. Tyndall: Centre for Climate Change Research.
Zurück zum Zitat Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economy and Statistics, 43(3), 225–250.CrossRef Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economy and Statistics, 43(3), 225–250.CrossRef
Zurück zum Zitat Babonneau, F., Haurie, A., Loulou, R., & Vielle, M. (2012). Combining stochastic optimization and Monte Carlo simulation to deal with uncertainties in climate policy assessment. Environmental Modeling and Assessment, 17, 51–76.CrossRef Babonneau, F., Haurie, A., Loulou, R., & Vielle, M. (2012). Combining stochastic optimization and Monte Carlo simulation to deal with uncertainties in climate policy assessment. Environmental Modeling and Assessment, 17, 51–76.CrossRef
Zurück zum Zitat Barker, T., Dagoumas, A., & Rubin, J. (2009). The macroeconomic rebound effect and the world economy. Energy Efficiency, 2, 411–427.CrossRef Barker, T., Dagoumas, A., & Rubin, J. (2009). The macroeconomic rebound effect and the world economy. Energy Efficiency, 2, 411–427.CrossRef
Zurück zum Zitat Barreto, L., & Kypreos, S. (2004). Endogenizing R&D and market experience in the “bottom-up” energy-system ERIS model. Technovation, 24, 615–629.CrossRef Barreto, L., & Kypreos, S. (2004). Endogenizing R&D and market experience in the “bottom-up” energy-system ERIS model. Technovation, 24, 615–629.CrossRef
Zurück zum Zitat Bibas, R., Méjean, A., & Hamdi-Cherif, M. (2014). Energy efficiency policies and the timing of action: an assessment of climate mitigation costs. Technological Forecasting and Social Change, 90, 137–152.CrossRef Bibas, R., Méjean, A., & Hamdi-Cherif, M. (2014). Energy efficiency policies and the timing of action: an assessment of climate mitigation costs. Technological Forecasting and Social Change, 90, 137–152.CrossRef
Zurück zum Zitat Binswanger, M. (2001). Technological progress and sustainable development: what about the rebound effect? Ecological Economics, 36, 119–132.CrossRef Binswanger, M. (2001). Technological progress and sustainable development: what about the rebound effect? Ecological Economics, 36, 119–132.CrossRef
Zurück zum Zitat Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., & Tavoni, M. (2006). WITCH: a world induced technical change hybrid model. The Energy Journal, 27, 13–38. Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., & Tavoni, M. (2006). WITCH: a world induced technical change hybrid model. The Energy Journal, 27, 13–38.
Zurück zum Zitat Brännlund, R., Ghalwash, T., & Nordström, J. (2007). Increased energy efficiency and the rebound effect: effects on consumption and emissions. Energy Economics, 29, 1–17.CrossRef Brännlund, R., Ghalwash, T., & Nordström, J. (2007). Increased energy efficiency and the rebound effect: effects on consumption and emissions. Energy Economics, 29, 1–17.CrossRef
Zurück zum Zitat Buonanno, P., Carraro, C., & Galeotti, M. (2003). Endogenous induced technical change and the costs of Kyoto. Resource and Energy Economics, 25, 11–34.CrossRef Buonanno, P., Carraro, C., & Galeotti, M. (2003). Endogenous induced technical change and the costs of Kyoto. Resource and Energy Economics, 25, 11–34.CrossRef
Zurück zum Zitat Dowlatabadi, H., & Azar, C. (1999). A review of technical change in assessment of climate policy. Annual Review of Energy and the Environment, 24, 513–544.CrossRef Dowlatabadi, H., & Azar, C. (1999). A review of technical change in assessment of climate policy. Annual Review of Energy and the Environment, 24, 513–544.CrossRef
Zurück zum Zitat Dowlatabadi, H., & Oravetz, M. A. (2006). US long-term energy intensity: backcast and projection. Energy Policy, 34, 3245–3256.CrossRef Dowlatabadi, H., & Oravetz, M. A. (2006). US long-term energy intensity: backcast and projection. Energy Policy, 34, 3245–3256.CrossRef
Zurück zum Zitat Duan, H. B., Fan, Y., & Zhu, L. (2013). What’s the most cost-effective policy of CO2 targeted reduction: an application of aggregated economic technological model with CCS? Applied Energy, 112, 866–875.CrossRef Duan, H. B., Fan, Y., & Zhu, L. (2013). What’s the most cost-effective policy of CO2 targeted reduction: an application of aggregated economic technological model with CCS? Applied Energy, 112, 866–875.CrossRef
Zurück zum Zitat Duan, H. B., Fan, Y., & Zhu, L. (2014). Optimal carbon taxes in carbon-constrained China: a logistic-induced energy economic hybrid model. Energy, 69, 345–356.CrossRef Duan, H. B., Fan, Y., & Zhu, L. (2014). Optimal carbon taxes in carbon-constrained China: a logistic-induced energy economic hybrid model. Energy, 69, 345–356.CrossRef
Zurück zum Zitat Duan, H. B., Fan, Y., & Zhu, L. (2015). Modeling the evolutionary paths of multiple carbon-free energy technologies with policy incentives. Environmental Modeling and Assessment, 20, 55–69.CrossRef Duan, H. B., Fan, Y., & Zhu, L. (2015). Modeling the evolutionary paths of multiple carbon-free energy technologies with policy incentives. Environmental Modeling and Assessment, 20, 55–69.CrossRef
Zurück zum Zitat Filippini, M., Hunt, L. C., & ZoriĆ, J. (2004). Impacts of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector. Energy Policy, 69, 73–81.CrossRef Filippini, M., Hunt, L. C., & ZoriĆ, J. (2004). Impacts of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector. Energy Policy, 69, 73–81.CrossRef
Zurück zum Zitat Fisher-Vanden, K., Jefferson, G. H., Jingkui, M., & Jianyi, X. (2006). Technology development and energy productivity in China. Energy Economics, 28, 690–705.CrossRef Fisher-Vanden, K., Jefferson, G. H., Jingkui, M., & Jianyi, X. (2006). Technology development and energy productivity in China. Energy Economics, 28, 690–705.CrossRef
Zurück zum Zitat Gerlagh, R., & van der Zwaan, B. C. C. (2003). Gross world product and consumption in a global warming model with endogenous technological change. Resource and Energy Economics, 25, 35–57.CrossRef Gerlagh, R., & van der Zwaan, B. C. C. (2003). Gross world product and consumption in a global warming model with endogenous technological change. Resource and Energy Economics, 25, 35–57.CrossRef
Zurück zum Zitat Gerlagh, R., & van der Zwaan, B. C. C. (2004). A sensitivity analysis of timing and costs of greenhouse gas emission reductions under learning effects and niche markets. Climatic Change, 65, 59–71.CrossRef Gerlagh, R., & van der Zwaan, B. C. C. (2004). A sensitivity analysis of timing and costs of greenhouse gas emission reductions under learning effects and niche markets. Climatic Change, 65, 59–71.CrossRef
Zurück zum Zitat Gerlagh, R. (2008). A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings. Energy Economics, 30, 425–448.CrossRef Gerlagh, R. (2008). A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings. Energy Economics, 30, 425–448.CrossRef
Zurück zum Zitat Grubb, M., Köhler, J., & Anderson, D. (2002). Induced technical change in energy and environmental modeling: analytic approaches and policy implications. Annual Review of Energy and the Environment, 27, 271–308.CrossRef Grubb, M., Köhler, J., & Anderson, D. (2002). Induced technical change in energy and environmental modeling: analytic approaches and policy implications. Annual Review of Energy and the Environment, 27, 271–308.CrossRef
Zurück zum Zitat Hasanbeigi, A., Morrow, W., Sathaye, J., Masanet, E., & Xu, T. F. (2013). A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry. Energy, 50, 315–325.CrossRef Hasanbeigi, A., Morrow, W., Sathaye, J., Masanet, E., & Xu, T. F. (2013). A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry. Energy, 50, 315–325.CrossRef
Zurück zum Zitat Hübler, M., Baumstark, L., Leimbach, M., Edenhofer, O., & Bauer, N. (2012). An integrated assessment model with endogenous growth. Ecological Economics, 83, 118–131.CrossRef Hübler, M., Baumstark, L., Leimbach, M., Edenhofer, O., & Bauer, N. (2012). An integrated assessment model with endogenous growth. Ecological Economics, 83, 118–131.CrossRef
Zurück zum Zitat International Energy Agency (IEA) (2002). Key world energy statistic. Paris: OECD Publishing. International Energy Agency (IEA) (2002). Key world energy statistic. Paris: OECD Publishing.
Zurück zum Zitat International Energy Agency (IEA) (2004). Renewable energy. Paris: OECD Publishing. International Energy Agency (IEA) (2004). Renewable energy. Paris: OECD Publishing.
Zurück zum Zitat International Energy Agency (IEA) (2012). World energy outlook 2012. Paris: OECD Publishing. International Energy Agency (IEA) (2012). World energy outlook 2012. Paris: OECD Publishing.
Zurück zum Zitat Jaffe, A. B. (1986). Technological opportunity and spillover of R&D evidence from firms’ patents, profits, and market value. American Economic Review, 76, 984–1001. Jaffe, A. B. (1986). Technological opportunity and spillover of R&D evidence from firms’ patents, profits, and market value. American Economic Review, 76, 984–1001.
Zurück zum Zitat Lin, B. Q., & Wang, X. L. (2014). Exploring energy efficiency in China’s iron and steel industry: a stochastic frontier approach. Energy Policy, 72, 87–96.CrossRef Lin, B. Q., & Wang, X. L. (2014). Exploring energy efficiency in China’s iron and steel industry: a stochastic frontier approach. Energy Policy, 72, 87–96.CrossRef
Zurück zum Zitat Löschel, A. (2002). Technological change in economic models of environmental policy: a survey. Ecological Economics, 43, 105–126.CrossRef Löschel, A. (2002). Technological change in economic models of environmental policy: a survey. Ecological Economics, 43, 105–126.CrossRef
Zurück zum Zitat Manne, A. S., & Richels, R. G. (1991). Global CO2 emission reductions: the impacts of rising energy costs. The Energy Journal, 12, 87–107.CrossRef Manne, A. S., & Richels, R. G. (1991). Global CO2 emission reductions: the impacts of rising energy costs. The Energy Journal, 12, 87–107.CrossRef
Zurück zum Zitat Manne, A., & Richels, R. G. (1997). On stabilizing CO2 concentrations: cost-effective emission reduction strategies. Environmental Modeling and Assessment, 2, 251–265.CrossRef Manne, A., & Richels, R. G. (1997). On stabilizing CO2 concentrations: cost-effective emission reduction strategies. Environmental Modeling and Assessment, 2, 251–265.CrossRef
Zurück zum Zitat Mansfield, E. (1977). Social and private rates of return from industrial innovations. The Quarter Journal of Economics, 91, 221–240.CrossRef Mansfield, E. (1977). Social and private rates of return from industrial innovations. The Quarter Journal of Economics, 91, 221–240.CrossRef
Zurück zum Zitat McKinsey and Company (2010). Energy efficiency: a compelling global resource. New York: Mckinsey & Company. McKinsey and Company (2010). Energy efficiency: a compelling global resource. New York: Mckinsey & Company.
Zurück zum Zitat Kesicki, F., & Yanagisawa, A. (2015). Modeling the potential for industrial energy efficiency in IEA’s world energy outlook. Energy Efficiency, 8, 155–169.CrossRef Kesicki, F., & Yanagisawa, A. (2015). Modeling the potential for industrial energy efficiency in IEA’s world energy outlook. Energy Efficiency, 8, 155–169.CrossRef
Zurück zum Zitat Nordhaus, W. D. (1994). Managing the global commons, the economics of climate change. Cambridge, MA: MIT Press. Nordhaus, W. D. (1994). Managing the global commons, the economics of climate change. Cambridge, MA: MIT Press.
Zurück zum Zitat Nordhaus, W. D., & Boyer, J. (2000). Warming the world, economic models of global warming. Cambridge, MA: MIT Press. Nordhaus, W. D., & Boyer, J. (2000). Warming the world, economic models of global warming. Cambridge, MA: MIT Press.
Zurück zum Zitat Nordhaus, W. D. (2002). Modelling induced innovation in climate-change policy. In A. Grubler, A. Nakicenovic, & W. D. Nordhaus (Eds.), Technological change and environment (pp. 182–209). Washington, DC: Resources for the Future. Nordhaus, W. D. (2002). Modelling induced innovation in climate-change policy. In A. Grubler, A. Nakicenovic, & W. D. Nordhaus (Eds.), Technological change and environment (pp. 182–209). Washington, DC: Resources for the Future.
Zurück zum Zitat Pakes, A. (1985). On patents, R&D, and the stock market rate of return. Journal of Political Economy, 93, 390–409.CrossRef Pakes, A. (1985). On patents, R&D, and the stock market rate of return. Journal of Political Economy, 93, 390–409.CrossRef
Zurück zum Zitat Popp, D. (2001). The effect of new technology on energy consumption. Resource and Energy Economics, 23, 215–239.CrossRef Popp, D. (2001). The effect of new technology on energy consumption. Resource and Energy Economics, 23, 215–239.CrossRef
Zurück zum Zitat Popp, D. (2002). Induced innovation and energy prices. American Economic Review, 92, 160–180.CrossRef Popp, D. (2002). Induced innovation and energy prices. American Economic Review, 92, 160–180.CrossRef
Zurück zum Zitat Popp, D. (2004). ENTICE: endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management, 48, 742–768.CrossRefMATH Popp, D. (2004). ENTICE: endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management, 48, 742–768.CrossRefMATH
Zurück zum Zitat Popp, D. (2006). ENTICE-BR: the effects of backstop technological R&D on climate policy models. Energy Economics, 28, 188–222.CrossRef Popp, D. (2006). ENTICE-BR: the effects of backstop technological R&D on climate policy models. Energy Economics, 28, 188–222.CrossRef
Zurück zum Zitat REN21. (2015). Renewables 2015 Global Status Report. Paris, France. ISBN 978–3–9815934-6-4. REN21. (2015). Renewables 2015 Global Status Report. Paris, France. ISBN 978–3–9815934-6-4.
Zurück zum Zitat Schnelder, S. H., & Goulder, L. H. (1997). Achieving low-cost emissions targets. Nature, 389, 13–14.CrossRef Schnelder, S. H., & Goulder, L. H. (1997). Achieving low-cost emissions targets. Nature, 389, 13–14.CrossRef
Zurück zum Zitat Schumacher, K., & Sands, R. D. (2007). Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany. Energy Economics, 29, 799–825.CrossRef Schumacher, K., & Sands, R. D. (2007). Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany. Energy Economics, 29, 799–825.CrossRef
Zurück zum Zitat Ürge-Vorsatz, D., & Metz, B. (2009). Energy efficiency: how far does it get us in controlling climate change. Energy Efficiency, 2, 87–94.CrossRef Ürge-Vorsatz, D., & Metz, B. (2009). Energy efficiency: how far does it get us in controlling climate change. Energy Efficiency, 2, 87–94.CrossRef
Zurück zum Zitat Wigley, T. M. L., Richels, R., & Edmonds, J. A. (1996). Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature, 379, 240–243.CrossRef Wigley, T. M. L., Richels, R., & Edmonds, J. A. (1996). Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature, 379, 240–243.CrossRef
Zurück zum Zitat Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109–123.CrossRef Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109–123.CrossRef
Zurück zum Zitat Zhang, P. (2011). The 11th five-year plan goal on energy saving has basically achieved. China Petroleum and Chemical Industry, 2, 50. Zhang, P. (2011). The 11th five-year plan goal on energy saving has basically achieved. China Petroleum and Chemical Industry, 2, 50.
Zurück zum Zitat Zhou, P., Sun, Z. R., & Zhou, D. Q. (2014). Optimal path for controlling CO2 emissions in China: a perspective of efficiency analysis. Energy Economics, 45, 99–110.CrossRef Zhou, P., Sun, Z. R., & Zhou, D. Q. (2014). Optimal path for controlling CO2 emissions in China: a perspective of efficiency analysis. Energy Economics, 45, 99–110.CrossRef
Metadaten
Titel
Role of endogenous energy efficiency improvement in global climate change mitigation
verfasst von
Hongbo Duan
Gupeng Zhang
Ying Fan
Shouyang Wang
Publikationsdatum
06.08.2016
Verlag
Springer Netherlands
Erschienen in
Energy Efficiency / Ausgabe 2/2017
Print ISSN: 1570-646X
Elektronische ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-016-9468-1

Weitere Artikel der Ausgabe 2/2017

Energy Efficiency 2/2017 Zur Ausgabe