Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Role of Microorganisms in Lignocellulosic Biodegradation

verfasst von : Vandana Rana, Diwakar Rana

Erschienen in: Renewable Biofuels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing the economic feasibility of biorefineries could strengthen the case for industrial production of biofuels which again could lower the environmental impact of current fossil fuel usage. Lignocellulose-degrading enzymes are derived from certain fungi and bacteria, which are not only difficult to culture at industrial scale but also exhibit low specific activity and low titer concentration. Accordingly, new technologies to improve the performance of lignocellulolytic enzymes have been investigated heavily during the last years. In this paper we will discuss the mechanism of lignocellulose degradation and the action of lignocellulolytic enzymes. We will further examine the latest developments for improving the production of lignocellulose-degrading enzymes from microbial production strains. Finally, we will discuss future strategies for cellulase production and evaluate their benefits and drawbacks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aa, K., Flengsrud, R., Lindahl, V., & Tronsmo, A. (1994). Characterization of production and enzyme properties of an endo-β-1,4-glucanase from Bacillus subtilis CK-2 isolated from compost soil. Antonie van Leeuwenhoek, 66(4), 319–326. doi:10.1007/bf00882767.CrossRef Aa, K., Flengsrud, R., Lindahl, V., & Tronsmo, A. (1994). Characterization of production and enzyme properties of an endo-β-1,4-glucanase from Bacillus subtilis CK-2 isolated from compost soil. Antonie van Leeuwenhoek, 66(4), 319–326. doi:10.​1007/​bf00882767.CrossRef
Zurück zum Zitat Aden, A., & Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose, 16(4), 535–545. doi:10.1007/s10570-009-9327-8.CrossRef Aden, A., & Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose, 16(4), 535–545. doi:10.​1007/​s10570-009-9327-8.CrossRef
Zurück zum Zitat Ahamed, A., & Vermette, P. (2008). Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochemical Engineering Journal, 42(1), 41–46. doi:10.1016/j.bej.2008.05.007.CrossRef Ahamed, A., & Vermette, P. (2008). Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochemical Engineering Journal, 42(1), 41–46. doi:10.​1016/​j.​bej.​2008.​05.​007.CrossRef
Zurück zum Zitat Aiello, C., Ferrer, A., & Ledesma, A. (1996). Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresource Technology, 57(1), 13–18. doi:10.1016/0960-8524(96)00012-0.CrossRef Aiello, C., Ferrer, A., & Ledesma, A. (1996). Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresource Technology, 57(1), 13–18. doi:10.​1016/​0960-8524(96)00012-0.CrossRef
Zurück zum Zitat Allgaier, S., Weiland, N., Hamad, I., & Kempken, F. (2010). Expression of ribonuclease A and ribonuclease N1 in the filamentous fungus Neurospora crassa. Applied Microbiology and Biotechnology, 85(4), 1041–1049. doi:10.1007/s00253-009-2161-y.CrossRef Allgaier, S., Weiland, N., Hamad, I., & Kempken, F. (2010). Expression of ribonuclease A and ribonuclease N1 in the filamentous fungus Neurospora crassa. Applied Microbiology and Biotechnology, 85(4), 1041–1049. doi:10.​1007/​s00253-009-2161-y.CrossRef
Zurück zum Zitat Alves, E. F., Bose, S. K., Francis, R. C., Colodette, J. L., Iakovlev, M., & Van Heiningen, A. (2010). Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydrate Polymers, 82(4), 1097–1101. doi:10.1016/j.carbpol.2010.06.038.CrossRef Alves, E. F., Bose, S. K., Francis, R. C., Colodette, J. L., Iakovlev, M., & Van Heiningen, A. (2010). Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydrate Polymers, 82(4), 1097–1101. doi:10.​1016/​j.​carbpol.​2010.​06.​038.CrossRef
Zurück zum Zitat Anderson, W., & Akin, D. (2008). Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. Journal of Industrial Microbiology & Biotechnology, 35(5), 355–366. doi:10.1007/s10295-007-0291-8.CrossRef Anderson, W., & Akin, D. (2008). Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. Journal of Industrial Microbiology & Biotechnology, 35(5), 355–366. doi:10.​1007/​s10295-007-0291-8.CrossRef
Zurück zum Zitat Arai, T., Kosugi, A., Chan, H., Koukiekolo, R., Yukawa, H., Inui, M., et al. (2006). Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Applied Microbiology and Biotechnology, 71(5), 654–660. doi:10.1007/s00253-005-0249-6.CrossRef Arai, T., Kosugi, A., Chan, H., Koukiekolo, R., Yukawa, H., Inui, M., et al. (2006). Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Applied Microbiology and Biotechnology, 71(5), 654–660. doi:10.​1007/​s00253-005-0249-6.CrossRef
Zurück zum Zitat Araujo, A., & Ward, O. (1990a). Extracellular mannanases and galactanases from selected fungi. Journal of Industrial Microbiology, 6(3), 171–178. doi:10.1007/bf01577692.CrossRef Araujo, A., & Ward, O. (1990a). Extracellular mannanases and galactanases from selected fungi. Journal of Industrial Microbiology, 6(3), 171–178. doi:10.​1007/​bf01577692.CrossRef
Zurück zum Zitat Araujo, A., & Ward, O. P. (1990b). Purification and some properties of the mannanases from Thielavia terrestris. Journal of Industrial Microbiology, 6(4), 269–274. doi:10.1007/bf01575872.CrossRef Araujo, A., & Ward, O. P. (1990b). Purification and some properties of the mannanases from Thielavia terrestris. Journal of Industrial Microbiology, 6(4), 269–274. doi:10.​1007/​bf01575872.CrossRef
Zurück zum Zitat Arora, D. S., & Sharma, R. K. (2009). Enhancement in in vitro digestibility of wheat straw obtained from different geographical regions during solid state fermentation by white rot fungi. BioResources, 4(3), 909–920. Arora, D. S., & Sharma, R. K. (2009). Enhancement in in vitro digestibility of wheat straw obtained from different geographical regions during solid state fermentation by white rot fungi. BioResources, 4(3), 909–920.
Zurück zum Zitat Baldrian, P. (2008). Enzymes of saprotrophic basidiomycetes. In J. C. F. Lynne Boddy & W. Pieter van (Eds.), British Mycological Society Symposia Series (Vol. 28, pp. 19–41). London: Academic Press. Baldrian, P. (2008). Enzymes of saprotrophic basidiomycetes. In J. C. F. Lynne Boddy & W. Pieter van (Eds.), British Mycological Society Symposia Series (Vol. 28, pp. 19–41). London: Academic Press.
Zurück zum Zitat Baldrian, P., Valášková, V., Merhautová, V., & Gabriel, J. (2005). Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology, 156(5–6), 670–676. doi:10.1016/j.resmic.2005.03.007.CrossRef Baldrian, P., Valášková, V., Merhautová, V., & Gabriel, J. (2005). Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology, 156(5–6), 670–676. doi:10.​1016/​j.​resmic.​2005.​03.​007.CrossRef
Zurück zum Zitat Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Aslam, N., & Walton, J. D. (2010). Synthetic enzyme mixtures for biomass deconstruction: Production and optimization of a core set. Biotechnology and Bioengineering, 106(5), 707–720. doi:10.1002/bit.22741.CrossRef Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Aslam, N., & Walton, J. D. (2010). Synthetic enzyme mixtures for biomass deconstruction: Production and optimization of a core set. Biotechnology and Bioengineering, 106(5), 707–720. doi:10.​1002/​bit.​22741.CrossRef
Zurück zum Zitat Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Bongers, M., & Walton, J. D. (2010). Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresource Technology, 101(23), 9097–9105. doi:10.1016/j.biortech.2010.07.028.CrossRef Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Bongers, M., & Walton, J. D. (2010). Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresource Technology, 101(23), 9097–9105. doi:10.​1016/​j.​biortech.​2010.​07.​028.CrossRef
Zurück zum Zitat Berka, R. M., Boominathan, K. C., et al. (1995). Aspergillus expression system. WO1995015391 A2. Berka, R. M., Boominathan, K. C., et al. (1995). Aspergillus expression system. WO1995015391 A2.
Zurück zum Zitat Biely, P. (2003). Xylanolytic enzymes. In Handbook of food enzymology. New York: Marcel Dekker. Biely, P. (2003). Xylanolytic enzymes. In Handbook of food enzymology. New York: Marcel Dekker.
Zurück zum Zitat Biely, P., de Vries, R. P., Vršanská, M., & Visser, J. (2000). Inverting character of α-glucuronidase A from Aspergillus tubingensis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1474(3), 360–364. doi:10.1016/S0304-4165(00)00029-5.CrossRef Biely, P., de Vries, R. P., Vršanská, M., & Visser, J. (2000). Inverting character of α-glucuronidase A from Aspergillus tubingensis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1474(3), 360–364. doi:10.​1016/​S0304-4165(00)00029-5.CrossRef
Zurück zum Zitat Blibech, M., Ghorbel, R., Fakhfakh, I., Ntarima, P., Piens, K., Bacha, A., et al. (2010). Purification and characterization of a low molecular weight of β-Mannanase from Penicillium occitanis Pol6. Applied Biochemistry and Biotechnology, 160(4), 1227–1240. doi:10.1007/s12010-009-8630-z.CrossRef Blibech, M., Ghorbel, R., Fakhfakh, I., Ntarima, P., Piens, K., Bacha, A., et al. (2010). Purification and characterization of a low molecular weight of β-Mannanase from Penicillium occitanis Pol6. Applied Biochemistry and Biotechnology, 160(4), 1227–1240. doi:10.​1007/​s12010-009-8630-z.CrossRef
Zurück zum Zitat Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856. doi:10.1016/j.fuel.2007.05.041.CrossRef Bridgeman, T. G., Jones, J. M., Shield, I., & Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856. doi:10.​1016/​j.​fuel.​2007.​05.​041.CrossRef
Zurück zum Zitat Brownell, H. H., & Saddler, J. N. (1987). Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis. Biotechnology and Bioengineering, 29(2), 228–235. doi:10.1002/bit.260290213.CrossRef Brownell, H. H., & Saddler, J. N. (1987). Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis. Biotechnology and Bioengineering, 29(2), 228–235. doi:10.​1002/​bit.​260290213.CrossRef
Zurück zum Zitat Brylev, A. N., Adylov, D. K., Tukhtaeva, G. G., Kamal’dinova, N. A., Abidova, L. D., & Rakhimov, D. A. (2001). Polysaccharides of rice straw. Chemistry of Natural Compounds, 37(6), 569–570. doi:10.1023/a:1014833319630.CrossRef Brylev, A. N., Adylov, D. K., Tukhtaeva, G. G., Kamal’dinova, N. A., Abidova, L. D., & Rakhimov, D. A. (2001). Polysaccharides of rice straw. Chemistry of Natural Compounds, 37(6), 569–570. doi:10.​1023/​a:​1014833319630.CrossRef
Zurück zum Zitat Bura, R., Chandra, R., & Saddler, J. (2009). Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnology Progress, 25(2), 315–322. doi:10.1002/btpr.98.CrossRef Bura, R., Chandra, R., & Saddler, J. (2009). Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnology Progress, 25(2), 315–322. doi:10.​1002/​btpr.​98.CrossRef
Zurück zum Zitat Busso, D., Peleg, Y., Heidebrecht, T., Romier, C., Jacobovitch, Y., Dantes, A., et al. (2011). Expression of protein complexes using multiple Escherichia coli protein co-expression systems: A benchmarking study. Journal of Structural Biology, 175(2), 159–170. doi:10.1016/j.jsb.2011.03.004.CrossRef Busso, D., Peleg, Y., Heidebrecht, T., Romier, C., Jacobovitch, Y., Dantes, A., et al. (2011). Expression of protein complexes using multiple Escherichia coli protein co-expression systems: A benchmarking study. Journal of Structural Biology, 175(2), 159–170. doi:10.​1016/​j.​jsb.​2011.​03.​004.CrossRef
Zurück zum Zitat Cannella, D., Hsieh, C.-W., Felby, C., & Jørgensen, H. (2012). Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnology for Biofuels, 5(1), 1–10. doi:10.1186/1754-6834-5-26.CrossRef Cannella, D., Hsieh, C.-W., Felby, C., & Jørgensen, H. (2012). Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnology for Biofuels, 5(1), 1–10. doi:10.​1186/​1754-6834-5-26.CrossRef
Zurück zum Zitat Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37(Suppl 1), D233–D238. doi:10.1093/nar/gkn663.CrossRef Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37(Suppl 1), D233–D238. doi:10.​1093/​nar/​gkn663.CrossRef
Zurück zum Zitat Chandel, A. K., Chandrasekhar, G., Silva, M. B., & da Silva, S. S. (2012). The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology, 32(3), 187–202.CrossRef Chandel, A. K., Chandrasekhar, G., Silva, M. B., & da Silva, S. S. (2012). The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology, 32(3), 187–202.CrossRef
Zurück zum Zitat Charles, E. O. R., & Gerald, C. L. (Eds.). (1989). Biodeterioration research (Vol. 2). New York: Plenum press. Charles, E. O. R., & Gerald, C. L. (Eds.). (1989). Biodeterioration research (Vol. 2). New York: Plenum press.
Zurück zum Zitat Chaudhuri, B. K., & Sahai, V. (1993). Production of cellulase enzyme from lactose in batch and continuous cultures by a partially constitutive strain of Trichoderma reesei. Enzyme and Microbial Technology, 15(6), 513–518. doi:10.1016/0141-0229(93)90085-G.CrossRef Chaudhuri, B. K., & Sahai, V. (1993). Production of cellulase enzyme from lactose in batch and continuous cultures by a partially constitutive strain of Trichoderma reesei. Enzyme and Microbial Technology, 15(6), 513–518. doi:10.​1016/​0141-0229(93)90085-G.CrossRef
Zurück zum Zitat Chen, M., Qin, Y., Cao, Q., Liu, G., Li, J., Li, Z., et al. (2013). Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. Bioresource Technology, 137, 33–40. doi:10.1016/j.biortech.2013.03.099.CrossRef Chen, M., Qin, Y., Cao, Q., Liu, G., Li, J., Li, Z., et al. (2013). Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. Bioresource Technology, 137, 33–40. doi:10.​1016/​j.​biortech.​2013.​03.​099.CrossRef
Zurück zum Zitat Cheng, K.-K., Cai, B.-Y., Zhang, J.-A., Ling, H.-Z., Zhou, Y.-J., Ge, J.-P., et al. (2008). Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal, 38(1), 105–109. doi:10.1016/j.bej.2007.07.012.CrossRef Cheng, K.-K., Cai, B.-Y., Zhang, J.-A., Ling, H.-Z., Zhou, Y.-J., Ge, J.-P., et al. (2008). Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal, 38(1), 105–109. doi:10.​1016/​j.​bej.​2007.​07.​012.CrossRef
Zurück zum Zitat Ciaramella, M., Cannio, R., Moracci, M., Pisani, F. M., & Rossi, M. (1995). Molecular biology of extremophiles. World Journal of Microbiology and Biotechnology, 11(1), 71–84. doi:10.1007/bf00339137.CrossRef Ciaramella, M., Cannio, R., Moracci, M., Pisani, F. M., & Rossi, M. (1995). Molecular biology of extremophiles. World Journal of Microbiology and Biotechnology, 11(1), 71–84. doi:10.​1007/​bf00339137.CrossRef
Zurück zum Zitat Couturier, M., Navarro, D., Olivé, C., Chevret, D., Haon, M., Favel, A., et al. (2012). Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics, 13(1), 1–14. doi:10.1186/1471-2164-13-57.CrossRef Couturier, M., Navarro, D., Olivé, C., Chevret, D., Haon, M., Favel, A., et al. (2012). Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics, 13(1), 1–14. doi:10.​1186/​1471-2164-13-57.CrossRef
Zurück zum Zitat da Silva Delabona, P., Sanchez Farinas, C., da Silva Lima, D. J., & da Cruz Pradella, J. G. (2013). Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation. Bioresource Technology, 132, 401–405. doi:10.1016/j.biortech.2012.11.087.CrossRef da Silva Delabona, P., Sanchez Farinas, C., da Silva Lima, D. J., & da Cruz Pradella, J. G. (2013). Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation. Bioresource Technology, 132, 401–405. doi:10.​1016/​j.​biortech.​2012.​11.​087.CrossRef
Zurück zum Zitat Dalbøge, H., & Heldt-Hansen, H. P. (1994). A novel method for efficient expression cloning of fungal enzyme genes. Molecular and General Genetics MGG, 243(3), 253–260. doi:10.1007/bf00301060.CrossRef Dalbøge, H., & Heldt-Hansen, H. P. (1994). A novel method for efficient expression cloning of fungal enzyme genes. Molecular and General Genetics MGG, 243(3), 253–260. doi:10.​1007/​bf00301060.CrossRef
Zurück zum Zitat Daniel, G., Asiegbu, F., & Johansson, M. (1998). The saprotrophic wood-degrading abilities of Heterobasidium annosum intersterility groups P and S. Mycological Research, 102(8), 991–997. doi:10.1017/S0953756297005935.CrossRef Daniel, G., Asiegbu, F., & Johansson, M. (1998). The saprotrophic wood-degrading abilities of Heterobasidium annosum intersterility groups P and S. Mycological Research, 102(8), 991–997. doi:10.​1017/​S095375629700593​5.CrossRef
Zurück zum Zitat Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578–595.CrossRef Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578–595.CrossRef
Zurück zum Zitat de Vries, R. P., Poulsen, C. H., Madrid, S., & Visser, J. (1998). aguA, the gene encoding an extracellular α-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. Journal of Bacteriology, 180(2), 243–249. de Vries, R. P., Poulsen, C. H., Madrid, S., & Visser, J. (1998). aguA, the gene encoding an extracellular α-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. Journal of Bacteriology, 180(2), 243–249.
Zurück zum Zitat de Vries, R. P., vanKuyk, P. A., Kester, H. C. M., & Visser, J. (2002). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochemical Journal, 363(2), 377–386.CrossRef de Vries, R. P., vanKuyk, P. A., Kester, H. C. M., & Visser, J. (2002). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochemical Journal, 363(2), 377–386.CrossRef
Zurück zum Zitat Delabona, P. D. S., Pirota, R. D. P. B., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2012). Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass and Bioenergy, 37, 243–250. doi:10.1016/j.biombioe.2011.12.006.CrossRef Delabona, P. D. S., Pirota, R. D. P. B., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2012). Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass and Bioenergy, 37, 243–250. doi:10.​1016/​j.​biombioe.​2011.​12.​006.CrossRef
Zurück zum Zitat Dhillon, N., Chhibber, S., Saxena, M., Pajni, S., & Vadehra, D. V. (1985). A constitutive endoglucanase (CMCase) from Bacillus licheniformis-1. Biotechnology Letters, 7(9), 695–697. doi:10.1007/bf01040212.CrossRef Dhillon, N., Chhibber, S., Saxena, M., Pajni, S., & Vadehra, D. V. (1985). A constitutive endoglucanase (CMCase) from Bacillus licheniformis-1. Biotechnology Letters, 7(9), 695–697. doi:10.​1007/​bf01040212.CrossRef
Zurück zum Zitat Dien, B. S., Ximenes, E. A., O’Bryan, P. J., Moniruzzaman, M., Li, X.-L., Balan, V., et al. (2008). Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresource Technology, 99(12), 5216–5225. doi:10.1016/j.biortech.2007.09.030.CrossRef Dien, B. S., Ximenes, E. A., O’Bryan, P. J., Moniruzzaman, M., Li, X.-L., Balan, V., et al. (2008). Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresource Technology, 99(12), 5216–5225. doi:10.​1016/​j.​biortech.​2007.​09.​030.CrossRef
Zurück zum Zitat Dijkerman, R., Bhansing, D. C. P., Op den Camp, H. J. M., van der Drift, C., & Vogels, G. D. (1997). Degradation of structural polysaccharides by the plant cell-wall degrading enzyme system from anaerobic fungi: An application study. Enzyme and Microbial Technology, 21(2), 130–136. doi:10.1016/S0141-0229(96)00251-7.CrossRef Dijkerman, R., Bhansing, D. C. P., Op den Camp, H. J. M., van der Drift, C., & Vogels, G. D. (1997). Degradation of structural polysaccharides by the plant cell-wall degrading enzyme system from anaerobic fungi: An application study. Enzyme and Microbial Technology, 21(2), 130–136. doi:10.​1016/​S0141-0229(96)00251-7.CrossRef
Zurück zum Zitat Ding, S.-Y., Liu, Y.-S., Zeng, Y., Himmel, M. E., Baker, J. O., & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338(6110), 1055–1060. doi:10.1126/science.1227491.CrossRef Ding, S.-Y., Liu, Y.-S., Zeng, Y., Himmel, M. E., Baker, J. O., & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338(6110), 1055–1060. doi:10.​1126/​science.​1227491.CrossRef
Zurück zum Zitat Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R. M., & Steinmüller, H. (1987). The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Applied Microbiology and Biotechnology, 26(5), 485–494. doi:10.1007/bf00253537.CrossRef Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R. M., & Steinmüller, H. (1987). The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Applied Microbiology and Biotechnology, 26(5), 485–494. doi:10.​1007/​bf00253537.CrossRef
Zurück zum Zitat Dueñas, R., Tengerdy, R. P., & Gutierrez-Correa, M. (1995). Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World Journal of Microbiology and Biotechnology, 11(3), 333–337. doi:10.1007/bf00367112.CrossRef Dueñas, R., Tengerdy, R. P., & Gutierrez-Correa, M. (1995). Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World Journal of Microbiology and Biotechnology, 11(3), 333–337. doi:10.​1007/​bf00367112.CrossRef
Zurück zum Zitat Duff, S. B., Cooper, D., & Fuller, O. M. (1985). Cellulase and beta-glucosidase production by mixed culture of Trichoderma reesei Rut C-30 and Aspergillus phoenicis. Biotechnology Letters, 7(3), 185–190. doi:10.1007/bf01027817.CrossRef Duff, S. B., Cooper, D., & Fuller, O. M. (1985). Cellulase and beta-glucosidase production by mixed culture of Trichoderma reesei Rut C-30 and Aspergillus phoenicis. Biotechnology Letters, 7(3), 185–190. doi:10.​1007/​bf01027817.CrossRef
Zurück zum Zitat Duff, S. J. B., Cooper, D. G., & Fuller, O. M. (1987). Effect of media composition and growth conditions on production of cellulase and β-glucosidase by a mixed fungal fermentation. Enzyme and Microbial Technology, 9(1), 47–52. doi:10.1016/0141-0229(87)90048-2.CrossRef Duff, S. J. B., Cooper, D. G., & Fuller, O. M. (1987). Effect of media composition and growth conditions on production of cellulase and β-glucosidase by a mixed fungal fermentation. Enzyme and Microbial Technology, 9(1), 47–52. doi:10.​1016/​0141-0229(87)90048-2.CrossRef
Zurück zum Zitat Duffner, F., Bertoldo, C., Andersen, J. T., Wagner, K., & Antranikian, G. (2000). A new thermoactive pullulanase from Desulfurococcus mucosus: Cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. Journal of Bacteriology, 182(22), 6331–6338.CrossRef Duffner, F., Bertoldo, C., Andersen, J. T., Wagner, K., & Antranikian, G. (2000). A new thermoactive pullulanase from Desulfurococcus mucosus: Cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. Journal of Bacteriology, 182(22), 6331–6338.CrossRef
Zurück zum Zitat Ellis, J. T., & Magnuson, T. S. (2012). Thermostable and alkalistable xylanases produced by the thermophilic bacterium Anoxybacillus flavithermus TWXYL3. ISRN Microbiology, 2012, 8. doi:10.5402/2012/517524. Ellis, J. T., & Magnuson, T. S. (2012). Thermostable and alkalistable xylanases produced by the thermophilic bacterium Anoxybacillus flavithermus TWXYL3. ISRN Microbiology, 2012, 8. doi:10.​5402/​2012/​517524.
Zurück zum Zitat Eriksson, K.-E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood components. Berlin, Germany: Springer Series in Wood Science.CrossRef Eriksson, K.-E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood components. Berlin, Germany: Springer Series in Wood Science.CrossRef
Zurück zum Zitat Estrada, P., Mata, I., Dominguez, J. M., Castillón, M. P., & Acebal, C. (1990). Kinetic mechanism of β-glucosidase from Trichoderma reesei QM 9414. Biochimica et Biophysica Acta (BBA) - General Subjects, 1033(3), 298–304. doi:10.1016/0304-4165(90)90137-L.CrossRef Estrada, P., Mata, I., Dominguez, J. M., Castillón, M. P., & Acebal, C. (1990). Kinetic mechanism of β-glucosidase from Trichoderma reesei QM 9414. Biochimica et Biophysica Acta (BBA) - General Subjects, 1033(3), 298–304. doi:10.​1016/​0304-4165(90)90137-L.CrossRef
Zurück zum Zitat Fackler, K., Gradinger, C., Hinterstoisser, B., Messner, K., & Schwanninger, M. (2006). Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme and Microbial Technology, 39(7), 1476–1483. doi:10.1016/j.enzmictec.2006.03.043.CrossRef Fackler, K., Gradinger, C., Hinterstoisser, B., Messner, K., & Schwanninger, M. (2006). Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme and Microbial Technology, 39(7), 1476–1483. doi:10.​1016/​j.​enzmictec.​2006.​03.​043.CrossRef
Zurück zum Zitat Fagerstedt, K. V., Kukkola, E. M., Koistinen, V. V. T., Takahashi, J., & Marjamaa, K. (2010). Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52(2), 186–194. doi:10.1111/j.1744-7909.2010.00928.x.CrossRef Fagerstedt, K. V., Kukkola, E. M., Koistinen, V. V. T., Takahashi, J., & Marjamaa, K. (2010). Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52(2), 186–194. doi:10.​1111/​j.​1744-7909.​2010.​00928.​x.CrossRef
Zurück zum Zitat Faulds, C. B., & Williamson, G. (1995). Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Applied Microbiology and Biotechnology, 43(6), 1082–1087. doi:10.1007/bf00166929.CrossRef Faulds, C. B., & Williamson, G. (1995). Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Applied Microbiology and Biotechnology, 43(6), 1082–1087. doi:10.​1007/​bf00166929.CrossRef
Zurück zum Zitat Fenn, P., & Kent Kirk, T. (1981). Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Archives of Microbiology, 130(1), 59–65. doi:10.1007/bf00527073.CrossRef Fenn, P., & Kent Kirk, T. (1981). Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Archives of Microbiology, 130(1), 59–65. doi:10.​1007/​bf00527073.CrossRef
Zurück zum Zitat Ferraroni, M., Myasoedova, N., Schmatchenko, V., Leontievsky, A., Golovleva, L., Scozzafava, A., et al. (2007). Crystal structure of a blue laccase from Lentinus tigrinus: Evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology, 7(1), 60.CrossRef Ferraroni, M., Myasoedova, N., Schmatchenko, V., Leontievsky, A., Golovleva, L., Scozzafava, A., et al. (2007). Crystal structure of a blue laccase from Lentinus tigrinus: Evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology, 7(1), 60.CrossRef
Zurück zum Zitat Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278(34), 31988–31997. doi:10.1074/jbc.M304750200.CrossRef Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278(34), 31988–31997. doi:10.​1074/​jbc.​M304750200.CrossRef
Zurück zum Zitat Foust, T. D., Wallace, R., Wooley, R., Sheehan, J., Ibsen, K., Dayton, D., et al. (2007). A national laboratory market and technology assessment of the 30 × 30 scenario. Technical Report, NREL/TP-510-40942. Foust, T. D., Wallace, R., Wooley, R., Sheehan, J., Ibsen, K., Dayton, D., et al. (2007). A national laboratory market and technology assessment of the 30 × 30 scenario. Technical Report, NREL/TP-510-40942.
Zurück zum Zitat Friedrich, J., Cimerman, A., & Perdih, A. (1987). Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Applied Microbiology and Biotechnology, 26(3), 299–303. doi:10.1007/bf00286328.CrossRef Friedrich, J., Cimerman, A., & Perdih, A. (1987). Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Applied Microbiology and Biotechnology, 26(3), 299–303. doi:10.​1007/​bf00286328.CrossRef
Zurück zum Zitat Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnology for Biofuels, 2(1), 24.CrossRef Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnology for Biofuels, 2(1), 24.CrossRef
Zurück zum Zitat Gabelle, J. C., Jourdier, E., Licht, R. B., Ben Chaabane, F., Henaut, I., Morchain, J., et al. (2012). Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chemical Engineering Science, 75, 408–417. doi:10.1016/j.ces.2012.03.053.CrossRef Gabelle, J. C., Jourdier, E., Licht, R. B., Ben Chaabane, F., Henaut, I., Morchain, J., et al. (2012). Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chemical Engineering Science, 75, 408–417. doi:10.​1016/​j.​ces.​2012.​03.​053.CrossRef
Zurück zum Zitat Gamarra, N., Villena, G., & Gutiérrez-Correa, M. (2010). Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Applied Microbiology and Biotechnology, 87(2), 545–551. doi:10.1007/s00253-010-2540-4.CrossRef Gamarra, N., Villena, G., & Gutiérrez-Correa, M. (2010). Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Applied Microbiology and Biotechnology, 87(2), 545–551. doi:10.​1007/​s00253-010-2540-4.CrossRef
Zurück zum Zitat Gao, D., Uppugundla, N., Chundawat, S., Yu, X., Hermanson, S., Gowda, K., et al. (2011). Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnology for Biofuels, 4(1), 5.CrossRef Gao, D., Uppugundla, N., Chundawat, S., Yu, X., Hermanson, S., Gowda, K., et al. (2011). Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnology for Biofuels, 4(1), 5.CrossRef
Zurück zum Zitat García-Aparicio, M., Ballesteros, I., González, A., Oliva, J., Ballesteros, M., & Negro, M. (2006). Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. In J. McMillan, W. Adney, J. Mielenz, & K. T. Klasson (Eds.), Twenty-seventh symposium on biotechnology for fuels and chemicals (pp. 278–288). Totowa, NJ: Humana Press.CrossRef García-Aparicio, M., Ballesteros, I., González, A., Oliva, J., Ballesteros, M., & Negro, M. (2006). Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. In J. McMillan, W. Adney, J. Mielenz, & K. T. Klasson (Eds.), Twenty-seventh symposium on biotechnology for fuels and chemicals (pp. 278–288). Totowa, NJ: Humana Press.CrossRef
Zurück zum Zitat Garvey, M., Klose, H., et al. (2013). Cellulases for biomass degradation: Comparing recombinant cellulase expression platforms. Trends in Biotechnology, 31(10), 581–593.CrossRef Garvey, M., Klose, H., et al. (2013). Cellulases for biomass degradation: Comparing recombinant cellulase expression platforms. Trends in Biotechnology, 31(10), 581–593.CrossRef
Zurück zum Zitat Gefen, G., Anbar, M., Morag, E., Lamed, R., & Bayer, E. A. (2012). Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proceedings of the National Academy of Sciences, 109(26), 10298–10303. doi:10.1073/pnas.1202747109.CrossRef Gefen, G., Anbar, M., Morag, E., Lamed, R., & Bayer, E. A. (2012). Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proceedings of the National Academy of Sciences, 109(26), 10298–10303. doi:10.​1073/​pnas.​1202747109.CrossRef
Zurück zum Zitat Germann, U. A., Müller, G., Hunziker, P. E., & Lerch, K. (1988). Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. Journal of Biological Chemistry, 263(2), 885–896. Germann, U. A., Müller, G., Hunziker, P. E., & Lerch, K. (1988). Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. Journal of Biological Chemistry, 263(2), 885–896.
Zurück zum Zitat Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., & Warren, R. A. (1991). Domains in microbial beta-1, 4-glycanases: Sequence conservation, function, and enzyme families. Microbiological Reviews, 55(2), 303–315. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., & Warren, R. A. (1991). Domains in microbial beta-1, 4-glycanases: Sequence conservation, function, and enzyme families. Microbiological Reviews, 55(2), 303–315.
Zurück zum Zitat Glenn, J. K., Morgan, M. A., Mayfield, M. B., Kuwahara, M., & Gold, M. H. (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 114(3), 1077–1083. doi:10.1016/0006-291X(83)90672-1.CrossRef Glenn, J. K., Morgan, M. A., Mayfield, M. B., Kuwahara, M., & Gold, M. H. (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 114(3), 1077–1083. doi:10.​1016/​0006-291X(83)90672-1.CrossRef
Zurück zum Zitat Golan, G., Shallom, D., Teplitsky, A., Zaide, G., Shulami, S., Baasov, T., et al. (2004). Crystal structures of Geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products: Mechanistic implications. Journal of Biological Chemistry, 279(4), 3014–3024. doi:10.1074/jbc.M310098200.CrossRef Golan, G., Shallom, D., Teplitsky, A., Zaide, G., Shulami, S., Baasov, T., et al. (2004). Crystal structures of Geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products: Mechanistic implications. Journal of Biological Chemistry, 279(4), 3014–3024. doi:10.​1074/​jbc.​M310098200.CrossRef
Zurück zum Zitat Großwindhager, C., Sachslehner, A., Nidetzky, B., & Haltrich, D. (1999). Endo-β-1,4-d-mannanase is efficiently produced by Sclerotium (Athelia) rolfsii under derepressed conditions. Journal of Biotechnology, 67(2–3), 189–203. doi:10.1016/S0168-1656(98)00176-X.CrossRef Großwindhager, C., Sachslehner, A., Nidetzky, B., & Haltrich, D. (1999). Endo-β-1,4-d-mannanase is efficiently produced by Sclerotium (Athelia) rolfsii under derepressed conditions. Journal of Biotechnology, 67(2–3), 189–203. doi:10.​1016/​S0168-1656(98)00176-X.CrossRef
Zurück zum Zitat Gübitz, G., Laussamauer, B., Schubert-Zsilavccz, M., & Steiner, W. (2000). Production of 61-α-galactosyl-β-mannotriose with endo-1,4-β-mannanases from Schizophyllum commune and Sclerotium rolfsii. Enzyme and Microbial Technology, 26(1), 15–21.CrossRef Gübitz, G., Laussamauer, B., Schubert-Zsilavccz, M., & Steiner, W. (2000). Production of 61-α-galactosyl-β-mannotriose with endo-1,4-β-mannanases from Schizophyllum commune and Sclerotium rolfsii. Enzyme and Microbial Technology, 26(1), 15–21.CrossRef
Zurück zum Zitat Guerra, A., Mendonça, R., Ferraz, A., Lu, F., & Ralph, J. (2004). Structural characterization of lignin during pinus taeda wood treatment with Ceriporiopsis subvermispora. Applied and Environmental Microbiology, 70(7), 4073–4078. doi:10.1128/aem.70.7.4073-4078.2004.CrossRef Guerra, A., Mendonça, R., Ferraz, A., Lu, F., & Ralph, J. (2004). Structural characterization of lignin during pinus taeda wood treatment with Ceriporiopsis subvermispora. Applied and Environmental Microbiology, 70(7), 4073–4078. doi:10.​1128/​aem.​70.​7.​4073-4078.​2004.CrossRef
Zurück zum Zitat Guillén, F., Martı́nez, M. A. J., Muñoz, C., & Martı́nez, A. T. (1997). Quinone redox cycling in the ligninolytic funguspleurotus eryngiileading to extracellular production of superoxide anion radical. Archives of Biochemistry and Biophysics, 339(1), 190–199. doi:10.1006/abbi.1996.9834. Guillén, F., Martı́nez, M. A. J., Muñoz, C., & Martı́nez, A. T. (1997). Quinone redox cycling in the ligninolytic funguspleurotus eryngiileading to extracellular production of superoxide anion radical. Archives of Biochemistry and Biophysics, 339(1), 190–199. doi:10.​1006/​abbi.​1996.​9834.
Zurück zum Zitat Gutiérrez, A., Caramelo, L., Prieto, A., Martínez, M. J., & Martínez, A. T. (1994). Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Applied and Environmental Microbiology, 60(6), 1783–1788. Gutiérrez, A., Caramelo, L., Prieto, A., Martínez, M. J., & Martínez, A. T. (1994). Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Applied and Environmental Microbiology, 60(6), 1783–1788.
Zurück zum Zitat Hakulinen, N., Kruus, K., Koivula, A., & Rouvinen, J. (2006). A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications, 350(4), 929–934. doi:10.1016/j.bbrc.2006.09.144.CrossRef Hakulinen, N., Kruus, K., Koivula, A., & Rouvinen, J. (2006). A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications, 350(4), 929–934. doi:10.​1016/​j.​bbrc.​2006.​09.​144.CrossRef
Zurück zum Zitat Haltrich, D., Laussamayer, B., Steiner, W., Nidetzky, B., & Kulbe, K. D. (1994). Cellulolytic and hemicellulolytic enzymes of sclerotium rolfsii: Optimization of the culture medium and enzymatic hydrolysis of lignocellulosic material. Bioresource Technology, 50(1), 43–50. doi:10.1016/0960-8524(94)90219-4.CrossRef Haltrich, D., Laussamayer, B., Steiner, W., Nidetzky, B., & Kulbe, K. D. (1994). Cellulolytic and hemicellulolytic enzymes of sclerotium rolfsii: Optimization of the culture medium and enzymatic hydrolysis of lignocellulosic material. Bioresource Technology, 50(1), 43–50. doi:10.​1016/​0960-8524(94)90219-4.CrossRef
Zurück zum Zitat Harris, P. V., Welner, D., McFarland, K. C., Re, E., Navarro Poulsen, J.-C., Brown, K., et al. (2010). Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry, 49(15), 3305–3316. doi:10.1021/bi100009p.CrossRef Harris, P. V., Welner, D., McFarland, K. C., Re, E., Navarro Poulsen, J.-C., Brown, K., et al. (2010). Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry, 49(15), 3305–3316. doi:10.​1021/​bi100009p.CrossRef
Zurück zum Zitat Heidorne, F. O., Magalhães, P. O., Ferraz, A. L., & Milagres, A. M. F. (2006). Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme and Microbial Technology, 38(3–4), 436–442. doi:10.1016/j.enzmictec.2005.06.015.CrossRef Heidorne, F. O., Magalhães, P. O., Ferraz, A. L., & Milagres, A. M. F. (2006). Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme and Microbial Technology, 38(3–4), 436–442. doi:10.​1016/​j.​enzmictec.​2005.​06.​015.CrossRef
Zurück zum Zitat Heinfling, A., Martínez, M. J., Martínez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Applied and Environmental Microbiology, 64(8), 2788–2793. Heinfling, A., Martínez, M. J., Martínez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Applied and Environmental Microbiology, 64(8), 2788–2793.
Zurück zum Zitat Heinfling, A., Martı́nez, M. A. J., Martı́nez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiology Letters, 165(1), 43–50. doi:10.1016/S0378-1097(98)00255-9. Heinfling, A., Martı́nez, M. A. J., Martı́nez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiology Letters, 165(1), 43–50. doi:10.​1016/​S0378-1097(98)00255-9.
Zurück zum Zitat Heinfling, A., Ruiz-Dueñas, F. J., Martı́nez, M. A. J., Bergbauer, M., Szewzyk, U., & Martı́nez, A. T. (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Letters, 428(3), 141–146. doi:10.1016/S0014-5793(98)00512-2.CrossRef Heinfling, A., Ruiz-Dueñas, F. J., Martı́nez, M. A. J., Bergbauer, M., Szewzyk, U., & Martı́nez, A. T. (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Letters, 428(3), 141–146. doi:10.​1016/​S0014-5793(98)00512-2.CrossRef
Zurück zum Zitat Henriksson, G., Akin, D. E., Slomczynski, D., & Eriksson, K.-E. L. (1999). Production of highly efficient enzymes for flax retting by Rhizomucor pusillus. Journal of Biotechnology, 68(2–3), 115–123. doi:10.1016/S0168-1656(98)00192-8.CrossRef Henriksson, G., Akin, D. E., Slomczynski, D., & Eriksson, K.-E. L. (1999). Production of highly efficient enzymes for flax retting by Rhizomucor pusillus. Journal of Biotechnology, 68(2–3), 115–123. doi:10.​1016/​S0168-1656(98)00192-8.CrossRef
Zurück zum Zitat Henriksson, G., Ander, P., Pettersson, B., & Pettersson, G. (1995). Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Applied Microbiology and Biotechnology, 42(5), 790–796. doi:10.1007/bf00171963.CrossRef Henriksson, G., Ander, P., Pettersson, B., & Pettersson, G. (1995). Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Applied Microbiology and Biotechnology, 42(5), 790–796. doi:10.​1007/​bf00171963.CrossRef
Zurück zum Zitat Herrera, A., Téllez-Luis, S. J., Ramı́rez, J. A., & Vázquez, M. (2003). Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science, 37(3), 267–274. doi:10.1006/jcrs.2002.0510.CrossRef Herrera, A., Téllez-Luis, S. J., Ramı́rez, J. A., & Vázquez, M. (2003). Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science, 37(3), 267–274. doi:10.​1006/​jcrs.​2002.​0510.CrossRef
Zurück zum Zitat Hideno, A., Inoue, H., Tsukahara, K., Yano, S., Fang, X., Endo, T., et al. (2011). Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme and Microbial Technology, 48(2), 162–168. doi:10.1016/j.enzmictec.2010.10.005.CrossRef Hideno, A., Inoue, H., Tsukahara, K., Yano, S., Fang, X., Endo, T., et al. (2011). Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme and Microbial Technology, 48(2), 162–168. doi:10.​1016/​j.​enzmictec.​2010.​10.​005.CrossRef
Zurück zum Zitat Higuchi, T. (1997). Biosynthesis of wood components. In Biochemistry and molecular biology of wood (pp. 93–262). Berlin/Heidelberg: Springer. Higuchi, T. (1997). Biosynthesis of wood components. In Biochemistry and molecular biology of wood (pp. 93–262). Berlin/Heidelberg: Springer.
Zurück zum Zitat Hildén, K., Hakala, T., Maijala, P., Lundell, T., & Hatakka, A. (2007). Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 77(2), 301–309. doi:10.1007/s00253-007-1155-x.CrossRef Hildén, K., Hakala, T., Maijala, P., Lundell, T., & Hatakka, A. (2007). Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 77(2), 301–309. doi:10.​1007/​s00253-007-1155-x.CrossRef
Zurück zum Zitat Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807. doi:10.1126/science.1137016.CrossRef Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807. doi:10.​1126/​science.​1137016.CrossRef
Zurück zum Zitat Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant peroxidases. Plant and Cell Physiology, 42(5), 462–468. doi:10.1093/pcp/pce061.CrossRef Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant peroxidases. Plant and Cell Physiology, 42(5), 462–468. doi:10.​1093/​pcp/​pce061.CrossRef
Zurück zum Zitat Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. doi:10.1007/s00253-003-1504-3.CrossRef Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. doi:10.​1007/​s00253-003-1504-3.CrossRef
Zurück zum Zitat Hong, M.-R., Park, C.-S., & Oh, D.-K. (2009). Characterization of a thermostable endo-1,5-α-l-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnology Letters, 31(9), 1439–1443. doi:10.1007/s10529-009-0019-0.CrossRef Hong, M.-R., Park, C.-S., & Oh, D.-K. (2009). Characterization of a thermostable endo-1,5-α-l-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnology Letters, 31(9), 1439–1443. doi:10.​1007/​s10529-009-0019-0.CrossRef
Zurück zum Zitat Horikoshi, K. (1997). Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles, 1(2), 61–66.CrossRef Horikoshi, K. (1997). Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles, 1(2), 61–66.CrossRef
Zurück zum Zitat Horn, S., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45.CrossRef Horn, S., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45.CrossRef
Zurück zum Zitat Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., & Howard, S. (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–619.CrossRef Howard, R. L., Abotsi, E., Jansen van Rensburg, E. L., & Howard, S. (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–619.CrossRef
Zurück zum Zitat Hu, J., Arantes, V., & Saddler, J. (2011). The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnology for Biofuels, 4(1), 36.CrossRef Hu, J., Arantes, V., & Saddler, J. (2011). The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnology for Biofuels, 4(1), 36.CrossRef
Zurück zum Zitat Hu, H. L., van den Brink, J., Gruben, B. S., Wösten, H. A. B., Gu, J. D., & de Vries, R. P. (2011). Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. International Biodeterioration & Biodegradation, 65(1), 248–252. doi:10.1016/j.ibiod.2010.11.008.CrossRef Hu, H. L., van den Brink, J., Gruben, B. S., Wösten, H. A. B., Gu, J. D., & de Vries, R. P. (2011). Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. International Biodeterioration & Biodegradation, 65(1), 248–252. doi:10.​1016/​j.​ibiod.​2010.​11.​008.CrossRef
Zurück zum Zitat Hyeon, J. E., Jeon, W. J., Whang, S. Y., & Han, S. O. (2011). Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme and Microbial Technology, 48(4–5), 371–377. doi:10.1016/j.enzmictec.2010.12.014.CrossRef Hyeon, J. E., Jeon, W. J., Whang, S. Y., & Han, S. O. (2011). Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme and Microbial Technology, 48(4–5), 371–377. doi:10.​1016/​j.​enzmictec.​2010.​12.​014.CrossRef
Zurück zum Zitat Iiyama, K., Lam, T., & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology, 104(2), 315–320.CrossRef Iiyama, K., Lam, T., & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology, 104(2), 315–320.CrossRef
Zurück zum Zitat Illman, B., Meinholtz, D., & Highley, T. (1988). Generation of hydroxyl radicals by the brown-rot fungus, Postia placenta. Document No. IRG/WP/1360. Illman, B., Meinholtz, D., & Highley, T. (1988). Generation of hydroxyl radicals by the brown-rot fungus, Postia placenta. Document No. IRG/WP/1360.
Zurück zum Zitat Jeya, M., Joo, A.-R., Lee, K.-M., Tiwari, M., Lee, K.-M., Kim, S.-H., et al. (2010). Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86(5), 1473–1484. doi:10.1007/s00253-009-2395-8.CrossRef Jeya, M., Joo, A.-R., Lee, K.-M., Tiwari, M., Lee, K.-M., Kim, S.-H., et al. (2010). Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86(5), 1473–1484. doi:10.​1007/​s00253-009-2395-8.CrossRef
Zurück zum Zitat Joo, A.-R., Jeya, M., Lee, K.-M., Lee, K.-M., Moon, H.-J., Kim, Y.-S., et al. (2010). Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochemistry, 45(6), 851–858. doi:10.1016/j.procbio.2010.02.005.CrossRef Joo, A.-R., Jeya, M., Lee, K.-M., Lee, K.-M., Moon, H.-J., Kim, Y.-S., et al. (2010). Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochemistry, 45(6), 851–858. doi:10.​1016/​j.​procbio.​2010.​02.​005.CrossRef
Zurück zum Zitat Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2005). Production of cellulases and hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 36(1), 42–48. doi:10.1016/j.enzmictec.2004.03.023.CrossRef Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2005). Production of cellulases and hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 36(1), 42–48. doi:10.​1016/​j.​enzmictec.​2004.​03.​023.CrossRef
Zurück zum Zitat Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40(11), 3519–3525. doi:10.1016/j.procbio.2005.03.057.CrossRef Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40(11), 3519–3525. doi:10.​1016/​j.​procbio.​2005.​03.​057.CrossRef
Zurück zum Zitat Jun, H., Guangye, H., & Daiwen, C. (2013). Insights into enzyme secretion by filamentous fungi: Comparative proteome analysis of Trichoderma reesei grown on different carbon sources. Journal of Proteomics, 89, 191–201. doi:10.1016/j.jprot.2013.06.014.CrossRef Jun, H., Guangye, H., & Daiwen, C. (2013). Insights into enzyme secretion by filamentous fungi: Comparative proteome analysis of Trichoderma reesei grown on different carbon sources. Journal of Proteomics, 89, 191–201. doi:10.​1016/​j.​jprot.​2013.​06.​014.CrossRef
Zurück zum Zitat Kamper, J., Kahmann, R., Bolker, M., Ma, L.-J., Brefort, T., Saville, B. J., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444(7115), 97–101. doi:10.1038/nature05248.CrossRef Kamper, J., Kahmann, R., Bolker, M., Ma, L.-J., Brefort, T., Saville, B. J., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444(7115), 97–101. doi:10.​1038/​nature05248.CrossRef
Zurück zum Zitat Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., et al. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89(Suppl 1), S20–S28. doi:10.1016/j.fuel.2010.01.001.CrossRef Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., et al. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89(Suppl 1), S20–S28. doi:10.​1016/​j.​fuel.​2010.​01.​001.CrossRef
Zurück zum Zitat Kersten, P. J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences, 87(8), 2936–2940. doi:10.1073/pnas.87.8.2936.CrossRef Kersten, P. J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences, 87(8), 2936–2940. doi:10.​1073/​pnas.​87.​8.​2936.CrossRef
Zurück zum Zitat Kim, C. H. (1995). Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Applied and Environmental Microbiology, 61(3), 959–965. Kim, C. H. (1995). Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Applied and Environmental Microbiology, 61(3), 959–965.
Zurück zum Zitat Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2010). Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass and Bioenergy, 34(12), 1914–1921. doi:10.1016/j.biombioe.2010.07.033.CrossRef Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2010). Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass and Bioenergy, 34(12), 1914–1921. doi:10.​1016/​j.​biombioe.​2010.​07.​033.CrossRef
Zurück zum Zitat Knauf, M., & Moniruzzaman, M. (2004). Lignocellulosic biomass processing: A perspective. International Sugar Journal, 106(1263), 147–150. Knauf, M., & Moniruzzaman, M. (2004). Lignocellulosic biomass processing: A perspective. International Sugar Journal, 106(1263), 147–150.
Zurück zum Zitat Knowles, J. R. (1987). Tinkering with enzymes: What are we learning? Science, 236(4806), 1252–1258.CrossRef Knowles, J. R. (1987). Tinkering with enzymes: What are we learning? Science, 236(4806), 1252–1258.CrossRef
Zurück zum Zitat Kootstra, A. M., Beeftink, H., Scott, E., & Sanders, J. (2009). Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnology for Biofuels, 2(1), 31.CrossRef Kootstra, A. M., Beeftink, H., Scott, E., & Sanders, J. (2009). Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnology for Biofuels, 2(1), 31.CrossRef
Zurück zum Zitat Kootstra, A. M. J., Mosier, N. S., Scott, E. L., Beeftink, H. H., & Sanders, J. P. M. (2009). Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochemical Engineering Journal, 43(1), 92–97. doi:10.1016/j.bej.2008.09.004.CrossRef Kootstra, A. M. J., Mosier, N. S., Scott, E. L., Beeftink, H. H., & Sanders, J. P. M. (2009). Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochemical Engineering Journal, 43(1), 92–97. doi:10.​1016/​j.​bej.​2008.​09.​004.CrossRef
Zurück zum Zitat Kormelink, F. J. M., Gruppen, H., Viëtor, R. J., & Voragen, A. G. J. (1993). Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydrate Research, 249(2), 355–367. doi:10.1016/0008-6215(93)84100-K.CrossRef Kormelink, F. J. M., Gruppen, H., Viëtor, R. J., & Voragen, A. G. J. (1993). Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydrate Research, 249(2), 355–367. doi:10.​1016/​0008-6215(93)84100-K.CrossRef
Zurück zum Zitat Kormelink, F. J. M., Lefebvre, B., Strozyk, F., & Voragen, A. G. J. (1993). Purification and characterization of an acetyl xylan esterase from Aspergillus niger. Journal of Biotechnology, 27(3), 267–282. doi:10.1016/0168-1656(93)90090-A.CrossRef Kormelink, F. J. M., Lefebvre, B., Strozyk, F., & Voragen, A. G. J. (1993). Purification and characterization of an acetyl xylan esterase from Aspergillus niger. Journal of Biotechnology, 27(3), 267–282. doi:10.​1016/​0168-1656(93)90090-A.CrossRef
Zurück zum Zitat Koschorreck, K., Richter, S., Ene, A., Roduner, E., Schmid, R., & Urlacher, V. (2008). Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology, 79(2), 217–224. doi:10.1007/s00253-008-1417-2.CrossRef Koschorreck, K., Richter, S., Ene, A., Roduner, E., Schmid, R., & Urlacher, V. (2008). Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology, 79(2), 217–224. doi:10.​1007/​s00253-008-1417-2.CrossRef
Zurück zum Zitat Kovács, K., Megyeri, L., Szakacs, G., Kubicek, C. P., Galbe, M., & Zacchi, G. (2008). Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme and Microbial Technology, 43(1), 48–55. doi:10.1016/j.enzmictec.2008.02.006.CrossRef Kovács, K., Megyeri, L., Szakacs, G., Kubicek, C. P., Galbe, M., & Zacchi, G. (2008). Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme and Microbial Technology, 43(1), 48–55. doi:10.​1016/​j.​enzmictec.​2008.​02.​006.CrossRef
Zurück zum Zitat Kristufek, D., Zeilinger, S., & Kubicek, C. P. (1995). Regulation of β-xylosidase formation by xylose in Trichoderma reesei. Applied Microbiology and Biotechnology, 42(5), 713–717. doi:10.1007/bf00171950.CrossRef Kristufek, D., Zeilinger, S., & Kubicek, C. P. (1995). Regulation of β-xylosidase formation by xylose in Trichoderma reesei. Applied Microbiology and Biotechnology, 42(5), 713–717. doi:10.​1007/​bf00171950.CrossRef
Zurück zum Zitat Kubicek, C., Mikus, M., Schuster, A., Schmoll, M., & Seiboth, B. (2009). Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2(1), 1–14. doi:10.1186/1754-6834-2-19.CrossRef Kubicek, C., Mikus, M., Schuster, A., Schmoll, M., & Seiboth, B. (2009). Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2(1), 1–14. doi:10.​1186/​1754-6834-2-19.CrossRef
Zurück zum Zitat Kumar, R., Singh, S., & Singh, O. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377–391. doi:10.1007/s10295-008-0327-8.CrossRef Kumar, R., Singh, S., & Singh, O. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377–391. doi:10.​1007/​s10295-008-0327-8.CrossRef
Zurück zum Zitat Kuwahara, M., Glenn, J. K., Morgan, M. A., & Gold, M. H. (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters, 169(2), 247–250. doi:10.1016/0014-5793(84)80327-0.CrossRef Kuwahara, M., Glenn, J. K., Morgan, M. A., & Gold, M. H. (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters, 169(2), 247–250. doi:10.​1016/​0014-5793(84)80327-0.CrossRef
Zurück zum Zitat Langston, J. A., Shaghasi, T., Abbate, E., Xu, F., Vlasenko, E., & Sweeney, M. D. (2011). Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology, 77(19), 7007–7015. doi:10.1128/aem.05815-11.CrossRef Langston, J. A., Shaghasi, T., Abbate, E., Xu, F., Vlasenko, E., & Sweeney, M. D. (2011). Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology, 77(19), 7007–7015. doi:10.​1128/​aem.​05815-11.CrossRef
Zurück zum Zitat Le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J. K., Culley, D. E., Collett, J. R., et al. (2009). Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences, 106(38), 16151–16156. doi:10.1073/pnas.0905848106.CrossRef Le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J. K., Culley, D. E., Collett, J. R., et al. (2009). Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences, 106(38), 16151–16156. doi:10.​1073/​pnas.​0905848106.CrossRef
Zurück zum Zitat Lee, K. H., Wi, S. G., Singh, A. P., & Kim, Y. S. (2004). Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. Journal of Wood Science, 50(3), 281–284. doi:10.1007/s10086-003-0558-2.CrossRef Lee, K. H., Wi, S. G., Singh, A. P., & Kim, Y. S. (2004). Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. Journal of Wood Science, 50(3), 281–284. doi:10.​1007/​s10086-003-0558-2.CrossRef
Zurück zum Zitat Li, M.-F., Fan, Y.-M., Xu, F., Sun, R.-C., & Zhang, X.-L. (2010). Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Industrial Crops and Products, 32(3), 551–559. doi:10.1016/j.indcrop.2010.07.004.CrossRef Li, M.-F., Fan, Y.-M., Xu, F., Sun, R.-C., & Zhang, X.-L. (2010). Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Industrial Crops and Products, 32(3), 551–559. doi:10.​1016/​j.​indcrop.​2010.​07.​004.CrossRef
Zurück zum Zitat Li, H., Kim, N.-J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresource Technology, 100(13), 3245–3251. doi:10.1016/j.biortech.2009.01.021.CrossRef Li, H., Kim, N.-J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresource Technology, 100(13), 3245–3251. doi:10.​1016/​j.​biortech.​2009.​01.​021.CrossRef
Zurück zum Zitat Liao, H., Zhang, X.-Z., Rollin, J. A., & Zhang, Y.-H. P. (2011). A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnology Journal, 6(11), 1409–1418. doi:10.1002/biot.201100157.CrossRef Liao, H., Zhang, X.-Z., Rollin, J. A., & Zhang, Y.-H. P. (2011). A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnology Journal, 6(11), 1409–1418. doi:10.​1002/​biot.​201100157.CrossRef
Zurück zum Zitat Lin, Z.-X., Zhang, H.-M., Ji, X.-J., Chen, J.-W., & Huang, H. (2011). Hydrolytic enzyme of cellulose for complex formulation applied research. Applied Biochemistry and Biotechnology, 164(1), 23–33. doi:10.1007/s12010-010-9111-0.CrossRef Lin, Z.-X., Zhang, H.-M., Ji, X.-J., Chen, J.-W., & Huang, H. (2011). Hydrolytic enzyme of cellulose for complex formulation applied research. Applied Biochemistry and Biotechnology, 164(1), 23–33. doi:10.​1007/​s12010-010-9111-0.CrossRef
Zurück zum Zitat Ljungdahl, L. G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Annals of the New York Academy of Sciences, 1125(1), 308–321. doi:10.1196/annals.1419.030.CrossRef Ljungdahl, L. G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Annals of the New York Academy of Sciences, 1125(1), 308–321. doi:10.​1196/​annals.​1419.​030.CrossRef
Zurück zum Zitat Lozovaya, V., Lygin, A., Zernova, O., Ulanov, A., Li, S., Hartman, G., et al. (2007). Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta, 225(3), 665–679. doi:10.1007/s00425-006-0368-z.CrossRef Lozovaya, V., Lygin, A., Zernova, O., Ulanov, A., Li, S., Hartman, G., et al. (2007). Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta, 225(3), 665–679. doi:10.​1007/​s00425-006-0368-z.CrossRef
Zurück zum Zitat Lu, H., Luo, H., Shi, P., Huang, H., Meng, K., Yang, P., et al. (2013). A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: Functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Applied Microbiology and Biotechnology, 98, 2155–2163. doi:10.1007/s00253-013-5112-6.CrossRef Lu, H., Luo, H., Shi, P., Huang, H., Meng, K., Yang, P., et al. (2013). A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: Functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Applied Microbiology and Biotechnology, 98, 2155–2163. doi:10.​1007/​s00253-013-5112-6.CrossRef
Zurück zum Zitat Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169–172. doi:10.1038/nbt0208-169.CrossRef Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169–172. doi:10.​1038/​nbt0208-169.CrossRef
Zurück zum Zitat Maeda, R. N., Barcelos, C. A., Anna, L. M. M. S., & Pereira, N., Jr. (2013). Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology, 163(1), 38–44. doi:10.1016/j.jbiotec.2012.10.014.CrossRef Maeda, R. N., Barcelos, C. A., Anna, L. M. M. S., & Pereira, N., Jr. (2013). Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology, 163(1), 38–44. doi:10.​1016/​j.​jbiotec.​2012.​10.​014.CrossRef
Zurück zum Zitat Maheshwari, D. K., Gohade, S., Paul, J., & Varma, A. (1994). Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydrate Polymers, 23(3), 161–163. doi:10.1016/0144-8617(94)90098-1.CrossRef Maheshwari, D. K., Gohade, S., Paul, J., & Varma, A. (1994). Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydrate Polymers, 23(3), 161–163. doi:10.​1016/​0144-8617(94)90098-1.CrossRef
Zurück zum Zitat Maki, M., Leung, K. T., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 5(5), 500–516.CrossRef Maki, M., Leung, K. T., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 5(5), 500–516.CrossRef
Zurück zum Zitat Mandels, M., & Weber, J. (1969). The production of cellulases. In Cellulases and their applications (Vol. 95, pp. 391–414). Washington, DC: American Chemical Society. Mandels, M., & Weber, J. (1969). The production of cellulases. In Cellulases and their applications (Vol. 95, pp. 391–414). Washington, DC: American Chemical Society.
Zurück zum Zitat Margolles-Clark, E., Tenkanen, M., Nakari-Setälä, T., & Penttilä, M. (1996). Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 62(10), 3840–3846. Margolles-Clark, E., Tenkanen, M., Nakari-Setälä, T., & Penttilä, M. (1996). Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 62(10), 3840–3846.
Zurück zum Zitat Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5), 553–560. doi:10.1038/nbt1403.CrossRef Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5), 553–560. doi:10.​1038/​nbt1403.CrossRef
Zurück zum Zitat Martínez, M. J., Ruiz-Dueñas, F. J., Guillén, F., & Martínez, Á. T. (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. European Journal of Biochemistry, 237(2), 424–432. doi:10.1111/j.1432-1033.1996.0424k.x.CrossRef Martínez, M. J., Ruiz-Dueñas, F. J., Guillén, F., & Martínez, Á. T. (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. European Journal of Biochemistry, 237(2), 424–432. doi:10.​1111/​j.​1432-1033.​1996.​0424k.​x.CrossRef
Zurück zum Zitat Martínez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., et al. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204. Martínez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., et al. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204.
Zurück zum Zitat Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 99(5), 1417–1424. doi:10.1016/j.biortech.2007.01.060.CrossRef Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 99(5), 1417–1424. doi:10.​1016/​j.​biortech.​2007.​01.​060.CrossRef
Zurück zum Zitat Martins, L. G. O., Soares, C. M., Pereira, M. M., Teixeira, M., Costa, T., Jones, G. H., et al. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Journal of Biological Chemistry, 277(21), 18849–18859. doi:10.1074/jbc.M200827200. Martins, L. G. O., Soares, C. M., Pereira, M. M., Teixeira, M., Costa, T., Jones, G. H., et al. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Journal of Biological Chemistry, 277(21), 18849–18859. doi:10.​1074/​jbc.​M200827200.
Zurück zum Zitat Mazzoli, R., Lamberti, C., & Pessione, E. (2012). Engineering new metabolic capabilities in bacteria: Lessons from recombinant cellulolytic strategies. Trends in Biotechnology, 30(2), 111–119.CrossRef Mazzoli, R., Lamberti, C., & Pessione, E. (2012). Engineering new metabolic capabilities in bacteria: Lessons from recombinant cellulolytic strategies. Trends in Biotechnology, 30(2), 111–119.CrossRef
Zurück zum Zitat Merino, S., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. In L. Olsson (Ed.), Biofuels (Vol. 108, pp. 95–120). Berlin/Heidelberg: Springer. Merino, S., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. In L. Olsson (Ed.), Biofuels (Vol. 108, pp. 95–120). Berlin/Heidelberg: Springer.
Zurück zum Zitat Mester, T., & Field, J. A. (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. Journal of Biological Chemistry, 273(25), 15412–15417. doi:10.1074/jbc.273.25.15412.CrossRef Mester, T., & Field, J. A. (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. Journal of Biological Chemistry, 273(25), 15412–15417. doi:10.​1074/​jbc.​273.​25.​15412.CrossRef
Zurück zum Zitat Metz, B., Kossen, N. W. F., & Suijdam, J. C. (1979). The rheology of mould suspensions. In Advances in biochemical engineering, (Vol. 11, pp. 103–156). Berlin/Heidelberg: Springer. Metz, B., Kossen, N. W. F., & Suijdam, J. C. (1979). The rheology of mould suspensions. In Advances in biochemical engineering, (Vol. 11, pp. 103–156). Berlin/Heidelberg: Springer.
Zurück zum Zitat Michniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. doi:10.1007/s00253-005-0015-9.CrossRef Michniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. doi:10.​1007/​s00253-005-0015-9.CrossRef
Zurück zum Zitat Miller, P. S., & Blum, P. H. (2010). Extremophile-inspired strategies for enzymatic biomass saccharification. Environmental Technology, 31(8–9), 1005–1015. doi:10.1080/09593330903536113. Miller, P. S., & Blum, P. H. (2010). Extremophile-inspired strategies for enzymatic biomass saccharification. Environmental Technology, 31(8–9), 1005–1015. doi:10.​1080/​0959333090353611​3.
Zurück zum Zitat Miron, J., Yosef, E., & Ben-Ghedalia, D. (2001). Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. Journal of Agricultural and Food Chemistry, 49(5), 2322–2326. doi:10.1021/jf0008700.CrossRef Miron, J., Yosef, E., & Ben-Ghedalia, D. (2001). Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. Journal of Agricultural and Food Chemistry, 49(5), 2322–2326. doi:10.​1021/​jf0008700.CrossRef
Zurück zum Zitat Mishra, C., Seeta, R., & Rao, M. (1985). Production of xylanolytic enzymes in association with the cellulolytic activities of Penicillium funiculosum. Enzyme and Microbial Technology, 7(6), 295–299. doi:10.1016/0141-0229(85)90089-4.CrossRef Mishra, C., Seeta, R., & Rao, M. (1985). Production of xylanolytic enzymes in association with the cellulolytic activities of Penicillium funiculosum. Enzyme and Microbial Technology, 7(6), 295–299. doi:10.​1016/​0141-0229(85)90089-4.CrossRef
Zurück zum Zitat Monsalve, G., John, F., Medina, P., Ruiz, C., & Adriana, A. (2006). Ethanol production of banana shell and cassava starch. Dyna Rev fac nac minas, 73, 21–27. Monsalve, G., John, F., Medina, P., Ruiz, C., & Adriana, A. (2006). Ethanol production of banana shell and cassava starch. Dyna Rev fac nac minas, 73, 21–27.
Zurück zum Zitat Montenecourt, B. S., & Eveleigh, D. E. (1977). Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Applied and Environmental Microbiology, 34(6), 777–782. Montenecourt, B. S., & Eveleigh, D. E. (1977). Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Applied and Environmental Microbiology, 34(6), 777–782.
Zurück zum Zitat Montenecourt, B. S., & Eveleigh, D. E. (1979). Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In Hydrolysis of cellulose: Mechanisms of enzymatic and acid catalysis (Vol. 181, pp. 289–301). Washington, DC: American Chemical Society. Montenecourt, B. S., & Eveleigh, D. E. (1979). Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In Hydrolysis of cellulose: Mechanisms of enzymatic and acid catalysis (Vol. 181, pp. 289–301). Washington, DC: American Chemical Society.
Zurück zum Zitat Moredo, N., Lorenzo, M., Domínguez, A., Moldes, D., Cameselle, C., & Sanroman, A. (2003). Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World Journal of Microbiology and Biotechnology, 19(7), 665–669. doi:10.1023/a:1025198917474.CrossRef Moredo, N., Lorenzo, M., Domínguez, A., Moldes, D., Cameselle, C., & Sanroman, A. (2003). Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World Journal of Microbiology and Biotechnology, 19(7), 665–669. doi:10.​1023/​a:​1025198917474.CrossRef
Zurück zum Zitat Mosihuzzaman, M., Quddus, A., Nahar, N., & Theander, O. (1989). Comparative study of carbohydrates in the two major species of jute (Corchorus capsularis and Corchorus olitorius. Journal of the Science of Food and Agriculture, 48(3), 305–310. doi:10.1002/jsfa.2740480306.CrossRef Mosihuzzaman, M., Quddus, A., Nahar, N., & Theander, O. (1989). Comparative study of carbohydrates in the two major species of jute (Corchorus capsularis and Corchorus olitorius. Journal of the Science of Food and Agriculture, 48(3), 305–310. doi:10.​1002/​jsfa.​2740480306.CrossRef
Zurück zum Zitat Murray, P., Aro, N., Collins, C., Grassick, A., Penttilä, M., Saloheimo, M., et al. (2004). Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression and Purification, 38(2), 248–257. doi:10.1016/j.pep.2004.08.006.CrossRef Murray, P., Aro, N., Collins, C., Grassick, A., Penttilä, M., Saloheimo, M., et al. (2004). Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression and Purification, 38(2), 248–257. doi:10.​1016/​j.​pep.​2004.​08.​006.CrossRef
Zurück zum Zitat Nakazawa, H., Okada, K., Kobayashi, R., Kubota, T., Onodera, T., Ochiai, N., et al. (2008). Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Applied Microbiology and Biotechnology, 81(4), 681–689. doi:10.1007/s00253-008-1667-z.CrossRef Nakazawa, H., Okada, K., Kobayashi, R., Kubota, T., Onodera, T., Ochiai, N., et al. (2008). Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Applied Microbiology and Biotechnology, 81(4), 681–689. doi:10.​1007/​s00253-008-1667-z.CrossRef
Zurück zum Zitat Navarro, D., Couturier, M., da Silva, G., Berrin, J.-G., Rouau, X., Asther, M., et al. (2010). Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microbial Cell Factories, 9(1), 58.CrossRef Navarro, D., Couturier, M., da Silva, G., Berrin, J.-G., Rouau, X., Asther, M., et al. (2010). Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microbial Cell Factories, 9(1), 58.CrossRef
Zurück zum Zitat Necochea, R., Valderrama, B., Díaz-Sandoval, S., Folch-Mallol, J. L., Vázquez-Duhalt, R., & Iturriaga, G. (2005). Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters, 244(2), 235–241.CrossRef Necochea, R., Valderrama, B., Díaz-Sandoval, S., Folch-Mallol, J. L., Vázquez-Duhalt, R., & Iturriaga, G. (2005). Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters, 244(2), 235–241.CrossRef
Zurück zum Zitat Nogawa, M., Goto, M., Okada, H., & Morikawa, Y. (2001). l-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Current Genetics, 38(6), 329–334. doi:10.1007/s002940000165.CrossRef Nogawa, M., Goto, M., Okada, H., & Morikawa, Y. (2001). l-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Current Genetics, 38(6), 329–334. doi:10.​1007/​s002940000165.CrossRef
Zurück zum Zitat Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 33(5), 612–619. doi:10.1016/S0141-0229(03)00181-9.CrossRef Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 33(5), 612–619. doi:10.​1016/​S0141-0229(03)00181-9.CrossRef
Zurück zum Zitat Pan, X., Xie, D., Yu, R. W., & Saddler, J. N. (2008). The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39–48. doi:10.1002/bit.21883.CrossRef Pan, X., Xie, D., Yu, R. W., & Saddler, J. N. (2008). The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39–48. doi:10.​1002/​bit.​21883.CrossRef
Zurück zum Zitat Panagiotou, G., Christakopoulos, P., & Olsson, L. (2005). Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling. Enzyme and Microbial Technology, 36(5–6), 693–699. doi:10.1016/j.enzmictec.2004.12.029.CrossRef Panagiotou, G., Christakopoulos, P., & Olsson, L. (2005). Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling. Enzyme and Microbial Technology, 36(5–6), 693–699. doi:10.​1016/​j.​enzmictec.​2004.​12.​029.CrossRef
Zurück zum Zitat Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products, 18(1), 37–45. doi:10.1016/S0926-6690(03)00018-9.CrossRef Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products, 18(1), 37–45. doi:10.​1016/​S0926-6690(03)00018-9.CrossRef
Zurück zum Zitat Panda, T., Bisaria, V. S., & Ghose, T. K. (1983). Studies on mixed fungal culture for cellulase and hemi-cellulase production part-1: Optimization of medium for the mixed culture of Trichoderma reesei D1-6 and Aspergillus wentii Pt 2804. Biotechnology Letters, 5(11), 767–772. doi:10.1007/bf01386499.CrossRef Panda, T., Bisaria, V. S., & Ghose, T. K. (1983). Studies on mixed fungal culture for cellulase and hemi-cellulase production part-1: Optimization of medium for the mixed culture of Trichoderma reesei D1-6 and Aspergillus wentii Pt 2804. Biotechnology Letters, 5(11), 767–772. doi:10.​1007/​bf01386499.CrossRef
Zurück zum Zitat Park, Y., Kang, S., Lee, J., Hong, S., & Kim, S. (2002). Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Applied Microbiology and Biotechnology, 58(6), 761–766. doi:10.1007/s00253-002-0965-0.CrossRef Park, Y., Kang, S., Lee, J., Hong, S., & Kim, S. (2002). Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Applied Microbiology and Biotechnology, 58(6), 761–766. doi:10.​1007/​s00253-002-0965-0.CrossRef
Zurück zum Zitat Petersson, A., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A.-B. (2007). Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass and Bioenergy, 31(11–12), 812–819. doi:10.1016/j.biombioe.2007.06.001.CrossRef Petersson, A., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A.-B. (2007). Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass and Bioenergy, 31(11–12), 812–819. doi:10.​1016/​j.​biombioe.​2007.​06.​001.CrossRef
Zurück zum Zitat Plapp, B. V. (1995). [4] Site-directed mutagenesis: A tool for studying enzyme catalysis. In L. P. Daniel (Ed.), Methods in enzymology (Vol. 249, pp. 91–119). London: Academic Press. Plapp, B. V. (1995). [4] Site-directed mutagenesis: A tool for studying enzyme catalysis. In L. P. Daniel (Ed.), Methods in enzymology (Vol. 249, pp. 91–119). London: Academic Press.
Zurück zum Zitat Poutanen, K., & Puls, J. (1988). Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Applied Microbiology and Biotechnology, 28(4–5), 425–432. doi:10.1007/bf00268208.CrossRef Poutanen, K., & Puls, J. (1988). Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Applied Microbiology and Biotechnology, 28(4–5), 425–432. doi:10.​1007/​bf00268208.CrossRef
Zurück zum Zitat Poutanen, K., Sundberg, M., Korte, H., & Puls, J. (1990). Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Applied Microbiology and Biotechnology, 33(5), 506–510. doi:10.1007/bf00172542.CrossRef Poutanen, K., Sundberg, M., Korte, H., & Puls, J. (1990). Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Applied Microbiology and Biotechnology, 33(5), 506–510. doi:10.​1007/​bf00172542.CrossRef
Zurück zum Zitat Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews, 41(3), 711–753. Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews, 41(3), 711–753.
Zurück zum Zitat Puchart, V. r., Katapodis, P., Biely, P., Kremnický, L. r., Christakopoulos, P., Vršanská, M., et al. (1999). Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme and Microbial Technology, 24(5–6), 355–361. doi:10.1016/S0141-0229(98)00132-X.CrossRef Puchart, V. r., Katapodis, P., Biely, P., Kremnický, L. r., Christakopoulos, P., Vršanská, M., et al. (1999). Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme and Microbial Technology, 24(5–6), 355–361. doi:10.​1016/​S0141-0229(98)00132-X.CrossRef
Zurück zum Zitat Punt, P. J., Seiboth, B., Weenink, X. O., Van Zeijl, C., Lenders, M., Konetschny, C., et al. (2001). Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Molecular Microbiology, 41(2), 513–525. doi:10.1046/j.1365-2958.2001.02541.x.CrossRef Punt, P. J., Seiboth, B., Weenink, X. O., Van Zeijl, C., Lenders, M., Konetschny, C., et al. (2001). Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Molecular Microbiology, 41(2), 513–525. doi:10.​1046/​j.​1365-2958.​2001.​02541.​x.CrossRef
Zurück zum Zitat Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 20(5), 200–206. doi:10.1016/S0167-7799(02)01933-9.CrossRef Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 20(5), 200–206. doi:10.​1016/​S0167-7799(02)01933-9.CrossRef
Zurück zum Zitat Rahman, Z., Shida, Y., Furukawa, T., Suzuki, Y., Okada, H., Ogasawara, W., et al. (2009). Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular β-glucosidase I. Bioscience, Biotechnology, and Biochemistry, 73(5), 1083–1089.CrossRef Rahman, Z., Shida, Y., Furukawa, T., Suzuki, Y., Okada, H., Ogasawara, W., et al. (2009). Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular β-glucosidase I. Bioscience, Biotechnology, and Biochemistry, 73(5), 1083–1089.CrossRef
Zurück zum Zitat Ramchuran, S. R., Nordberg Karlsson, E. N. K., Velut, S. V., de Maré, L. D. M., Hagander, P. H., & Holst, O. H. (2002). Production of heterologous thermostable glycoside hydrolases and the presence of host-cell proteases in substrate limited fed-batch cultures of Escherichia coli BL21(DE3). Applied Microbiology and Biotechnology, 60(4), 408–416. doi:10.1007/s00253-002-1132-3. Ramchuran, S. R., Nordberg Karlsson, E. N. K., Velut, S. V., de Maré, L. D. M., Hagander, P. H., & Holst, O. H. (2002). Production of heterologous thermostable glycoside hydrolases and the presence of host-cell proteases in substrate limited fed-batch cultures of Escherichia coli BL21(DE3). Applied Microbiology and Biotechnology, 60(4), 408–416. doi:10.​1007/​s00253-002-1132-3.
Zurück zum Zitat Robson, L. M., & Chambliss, G. H. (1984). Characterization of the cellulolytic activity of a Bacillus isolate. Applied and Environmental Microbiology, 47(5), 1039–1046. Robson, L. M., & Chambliss, G. H. (1984). Characterization of the cellulolytic activity of a Bacillus isolate. Applied and Environmental Microbiology, 47(5), 1039–1046.
Zurück zum Zitat Rowell, R. M. (1992). Opportunities for lignocellulosic materials and composites. In Emerging technologies for materials and chemicals from biomass (Vol. 476, pp. 12–27). Washington, DC: American Chemical Society. Rowell, R. M. (1992). Opportunities for lignocellulosic materials and composites. In Emerging technologies for materials and chemicals from biomass (Vol. 476, pp. 12–27). Washington, DC: American Chemical Society.
Zurück zum Zitat Rowell, R. M., Schultz, T. P., & Narayan, R. (1992). Emerging technologies for materials and chemicals from biomass, copyright, ACS symposium series, foreword. In M. J. Comstock (Ed.), Emerging technologies for materials and chemicals from biomass (Vol. 476, pp. i–iv). Washington, DC: American Chemical Society. Rowell, R. M., Schultz, T. P., & Narayan, R. (1992). Emerging technologies for materials and chemicals from biomass, copyright, ACS symposium series, foreword. In M. J. Comstock (Ed.), Emerging technologies for materials and chemicals from biomass (Vol. 476, pp. i–iv). Washington, DC: American Chemical Society.
Zurück zum Zitat Royer, J. C., Moyer, D. L., Reiwitch, S. G., Madden, M. S., Jensen, E. B., Brown, S. H., et al. (1995). Fusarium graminearum A 3/5 as a novel host for heterologous protein production. Nature Biotechnology, 13(12), 1479–1483. doi:10.1038/nbt1295-1479.CrossRef Royer, J. C., Moyer, D. L., Reiwitch, S. G., Madden, M. S., Jensen, E. B., Brown, S. H., et al. (1995). Fusarium graminearum A 3/5 as a novel host for heterologous protein production. Nature Biotechnology, 13(12), 1479–1483. doi:10.​1038/​nbt1295-1479.CrossRef
Zurück zum Zitat Rubio, M., Tortosa, J. F., Quesada, J., & Gómez, D. (1998). Fractionation of lignocellulosics. Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass and Bioenergy, 15(6), 483–491. doi:10.1016/S0961-9534(98)00054-3.CrossRef Rubio, M., Tortosa, J. F., Quesada, J., & Gómez, D. (1998). Fractionation of lignocellulosics. Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass and Bioenergy, 15(6), 483–491. doi:10.​1016/​S0961-9534(98)00054-3.CrossRef
Zurück zum Zitat Ruiz-Dueñas, F. J., Camarero, S., Pérez-Boada, M., Martínez, M. J., & Martínez, A. T. (2001). A new versatile peroxidase from Pleurotus. Biochemical Society Transactions, 29(Pt 2), 116–122.CrossRef Ruiz-Dueñas, F. J., Camarero, S., Pérez-Boada, M., Martínez, M. J., & Martínez, A. T. (2001). A new versatile peroxidase from Pleurotus. Biochemical Society Transactions, 29(Pt 2), 116–122.CrossRef
Zurück zum Zitat Sachslehner, A., Nidetzky, B., Kulbe, K. D., & Haltrich, D. (1998). Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Applied and Environmental Microbiology, 64(2), 594–600. Sachslehner, A., Nidetzky, B., Kulbe, K. D., & Haltrich, D. (1998). Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Applied and Environmental Microbiology, 64(2), 594–600.
Zurück zum Zitat Salony, T., Mishra, S., & Bisaria, V. S. (2006). Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Biotechnology, 71(5), 646–653. doi:10.1007/s00253-005-0206-4.CrossRef Salony, T., Mishra, S., & Bisaria, V. S. (2006). Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Biotechnology, 71(5), 646–653. doi:10.​1007/​s00253-005-0206-4.CrossRef
Zurück zum Zitat Sandgren, M., Ståhlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: Improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology, 89(3), 246–291. doi:10.1016/j.pbiomolbio.2004.11.002.CrossRef Sandgren, M., Ståhlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: Improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology, 89(3), 246–291. doi:10.​1016/​j.​pbiomolbio.​2004.​11.​002.CrossRef
Zurück zum Zitat Saulnier, L., & Thibault, J.-F. (1999). Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 79(3), 396–402. doi:10.1002/(sici)1097-0010(19990301)79:3<396::aid-jsfa262>3.0.co;2-b.CrossRef Saulnier, L., & Thibault, J.-F. (1999). Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 79(3), 396–402. doi:10.1002/(sici)1097-0010(19990301)79:3<396::aid-jsfa262>3.0.co;2-b.CrossRef
Zurück zum Zitat Schafner, D. W., & Toledo, R. T. (1992). Cellulase production in continuous culture by Trichoderma reesei on xylose-based media. Biotechnology and Bioengineering, 39(8), 865–869. doi:10.1002/bit.260390808.CrossRef Schafner, D. W., & Toledo, R. T. (1992). Cellulase production in continuous culture by Trichoderma reesei on xylose-based media. Biotechnology and Bioengineering, 39(8), 865–869. doi:10.​1002/​bit.​260390808.CrossRef
Zurück zum Zitat Shah, A., & Madamwar, D. (2005). Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World Journal of Microbiology and Biotechnology, 21(3), 233–243. doi:10.1007/s11274-004-3622-1.CrossRef Shah, A., & Madamwar, D. (2005). Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World Journal of Microbiology and Biotechnology, 21(3), 233–243. doi:10.​1007/​s11274-004-3622-1.CrossRef
Zurück zum Zitat Shleev, S., Nikitina, O., Christenson, A., Reimann, C. T., Yaropolov, A. I., Ruzgas, T., et al. (2007). Characterization of two new multiforms of Trametes pubescens laccase. Bioorganic Chemistry, 35(1), 35–49. doi:10.1016/j.bioorg.2006.08.001.CrossRef Shleev, S., Nikitina, O., Christenson, A., Reimann, C. T., Yaropolov, A. I., Ruzgas, T., et al. (2007). Characterization of two new multiforms of Trametes pubescens laccase. Bioorganic Chemistry, 35(1), 35–49. doi:10.​1016/​j.​bioorg.​2006.​08.​001.CrossRef
Zurück zum Zitat Sigoillot, J.-C., Berrin, J.-G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., et al. (2012). Fungal strategies for lignin degradation. In J. Lise & L. Catherine (Eds.), Advances in botanical research (Vol. 61, pp. 263–308). London: Academic Press. Sigoillot, J.-C., Berrin, J.-G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., et al. (2012). Fungal strategies for lignin degradation. In J. Lise & L. Catherine (Eds.), Advances in botanical research (Vol. 61, pp. 263–308). London: Academic Press.
Zurück zum Zitat Singh, D., & Chen, S. (2008). The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignin-degrading enzymes. Applied Microbiology and Biotechnology, 81(3), 399–417. doi:10.1007/s00253-008-1706-9.CrossRef Singh, D., & Chen, S. (2008). The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignin-degrading enzymes. Applied Microbiology and Biotechnology, 81(3), 399–417. doi:10.​1007/​s00253-008-1706-9.CrossRef
Zurück zum Zitat Singh, R., Varma, A. J., Seeta Laxman, R., & Rao, M. (2009). Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: Comparison with commercial cellulase. Bioresource Technology, 100(24), 6679–6681. doi:10.1016/j.biortech.2009.07.060.CrossRef Singh, R., Varma, A. J., Seeta Laxman, R., & Rao, M. (2009). Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: Comparison with commercial cellulase. Bioresource Technology, 100(24), 6679–6681. doi:10.​1016/​j.​biortech.​2009.​07.​060.CrossRef
Zurück zum Zitat Solov’eva, I. V., Okunev, O. N., Vel’kov, V. V., Koshelev, A. V., Bubnova, T. V., Kondrat’eva, E. G., et al. (2005). The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Microbiology, 74(2), 141–146. doi:10.1007/s11021-005-0043-6.CrossRef Solov’eva, I. V., Okunev, O. N., Vel’kov, V. V., Koshelev, A. V., Bubnova, T. V., Kondrat’eva, E. G., et al. (2005). The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Microbiology, 74(2), 141–146. doi:10.​1007/​s11021-005-0043-6.CrossRef
Zurück zum Zitat Sørensen, H. R., Meyer, A. S., & Pedersen, S. (2003). Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α-L-arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities. Biotechnology and Bioengineering, 81(6), 726–731. doi:10.1002/bit.10519.CrossRef Sørensen, H. R., Meyer, A. S., & Pedersen, S. (2003). Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α-L-arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities. Biotechnology and Bioengineering, 81(6), 726–731. doi:10.​1002/​bit.​10519.CrossRef
Zurück zum Zitat Sørensen, H. R., Pedersen, S., Jørgensen, C. T., & Meyer, A. S. (2007). Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing β-xylosidase and novel endo-1,4-β-xylanase and α-l-arabinofuranosidase activities. Biotechnology Progress, 23(1), 100–107. doi:10.1021/bp0601701.CrossRef Sørensen, H. R., Pedersen, S., Jørgensen, C. T., & Meyer, A. S. (2007). Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing β-xylosidase and novel endo-1,4-β-xylanase and α-l-arabinofuranosidase activities. Biotechnology Progress, 23(1), 100–107. doi:10.​1021/​bp0601701.CrossRef
Zurück zum Zitat Sørensen, A., Teller, P., Lübeck, P., & Ahring, B. (2011). Onsite enzyme production during bioethanol production from biomass: Screening for suitable fungal strains. Applied Biochemistry and Biotechnology, 164(7), 1058–1070. doi:10.1007/s12010-011-9194-2.CrossRef Sørensen, A., Teller, P., Lübeck, P., & Ahring, B. (2011). Onsite enzyme production during bioethanol production from biomass: Screening for suitable fungal strains. Applied Biochemistry and Biotechnology, 164(7), 1058–1070. doi:10.​1007/​s12010-011-9194-2.CrossRef
Zurück zum Zitat Stockton, B. C., Mitchell, D. J., Grohmann, K., & Himmel, M. E. (1991). Optimumβ-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13(1), 57–62. doi:10.1007/bf01033518.CrossRef Stockton, B. C., Mitchell, D. J., Grohmann, K., & Himmel, M. E. (1991). Optimumβ-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13(1), 57–62. doi:10.​1007/​bf01033518.CrossRef
Zurück zum Zitat Stricker, A., Mach, R., & Graaff, L. (2008). Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 78(2), 211–220. doi:10.1007/s00253-007-1322-0.CrossRef Stricker, A., Mach, R., & Graaff, L. (2008). Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 78(2), 211–220. doi:10.​1007/​s00253-007-1322-0.CrossRef
Zurück zum Zitat Su, X., Schmitz, G., Zhang, M., Mackie, R. I., & Cann, I. K. O. (2012). Heterologous gene expression in filamentous fungi. In M. G. Geoffrey & S. Sima (Eds.), Advances in applied microbiology (Vol. 81, pp. 1–61). London: Academic Press. Su, X., Schmitz, G., Zhang, M., Mackie, R. I., & Cann, I. K. O. (2012). Heterologous gene expression in filamentous fungi. In M. G. Geoffrey & S. Sima (Eds.), Advances in applied microbiology (Vol. 81, pp. 1–61). London: Academic Press.
Zurück zum Zitat Sulistyaningdyah, W. T., Ogawa, J., Tanaka, H., Maeda, C., & Shimizu, S. (2004). Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase. FEMS Microbiology Letters, 230(2), 209–214. doi:10.1016/S0378-1097(03)00892-9.CrossRef Sulistyaningdyah, W. T., Ogawa, J., Tanaka, H., Maeda, C., & Shimizu, S. (2004). Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase. FEMS Microbiology Letters, 230(2), 209–214. doi:10.​1016/​S0378-1097(03)00892-9.CrossRef
Zurück zum Zitat Suurnäkki, A., Tenkanen, M., Buchert, J., & Viikari, L. (1997). Hemicellulases in the bleaching of chemical pulps. In K. E. L. Eriksson, W. Babel, H. W. Blanch, C. L. Cooney, S. O. Enfors, A. Fiechter, A. M. Klibanov, B. Mattiasson, S. B. Primrose, H. J. Rehm, P. L. Rogers, H. Sahm, K. Schügerl, G. T. Tsao, K. Venkat, J. Villadsen, U. Stockar, & C. Wandrey (Eds.), Biotechnology in the pulp and paper industry (Vol. 57, pp. 261–287). Berlin/Heidelberg: Springer.CrossRef Suurnäkki, A., Tenkanen, M., Buchert, J., & Viikari, L. (1997). Hemicellulases in the bleaching of chemical pulps. In K. E. L. Eriksson, W. Babel, H. W. Blanch, C. L. Cooney, S. O. Enfors, A. Fiechter, A. M. Klibanov, B. Mattiasson, S. B. Primrose, H. J. Rehm, P. L. Rogers, H. Sahm, K. Schügerl, G. T. Tsao, K. Venkat, J. Villadsen, U. Stockar, & C. Wandrey (Eds.), Biotechnology in the pulp and paper industry (Vol. 57, pp. 261–287). Berlin/Heidelberg: Springer.CrossRef
Zurück zum Zitat Takao, M., Akiyama, K., & Sakai, T. (2002). Purification and characterization of thermostable endo-1,5-α-l-arabinase from a strain of Bacillus thermodenitrificans. Applied and Environmental Microbiology, 68(4), 1639–1646. doi:10.1128/aem.68.4.1639-1646.2002.CrossRef Takao, M., Akiyama, K., & Sakai, T. (2002). Purification and characterization of thermostable endo-1,5-α-l-arabinase from a strain of Bacillus thermodenitrificans. Applied and Environmental Microbiology, 68(4), 1639–1646. doi:10.​1128/​aem.​68.​4.​1639-1646.​2002.CrossRef
Zurück zum Zitat Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1998). Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. Journal of Biotechnology, 65(2–3), 163–171. doi:10.1016/S0168-1656(98)00084-4.CrossRef Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1998). Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. Journal of Biotechnology, 65(2–3), 163–171. doi:10.​1016/​S0168-1656(98)00084-4.CrossRef
Zurück zum Zitat Takashima, S., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1996). Cloning, sequencing, and expression of the cellulase genes of Humicola grisea var. thermoidea. Journal of Biotechnology, 50(2–3), 137–147. doi:10.1016/0168-1656(96)01555-6.CrossRef Takashima, S., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1996). Cloning, sequencing, and expression of the cellulase genes of Humicola grisea var. thermoidea. Journal of Biotechnology, 50(2–3), 137–147. doi:10.​1016/​0168-1656(96)01555-6.CrossRef
Zurück zum Zitat Tanaka, H., Itakura, S., & Enoki, A. (1999). Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. Journal of Biotechnology, 75(1), 57–70. doi:10.1016/S0168-1656(99)00138-8.CrossRef Tanaka, H., Itakura, S., & Enoki, A. (1999). Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. Journal of Biotechnology, 75(1), 57–70. doi:10.​1016/​S0168-1656(99)00138-8.CrossRef
Zurück zum Zitat Tatsumi, H., Katano, H., & Ikeda, T. (2006). Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Analytical Biochemistry, 357(2), 257–261. doi:10.1016/j.ab.2006.07.019.CrossRef Tatsumi, H., Katano, H., & Ikeda, T. (2006). Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Analytical Biochemistry, 357(2), 257–261. doi:10.​1016/​j.​ab.​2006.​07.​019.CrossRef
Zurück zum Zitat ten Have, R., & Teunissen, P. J. M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101(11), 3397–3414. doi:10.1021/cr000115l.CrossRef ten Have, R., & Teunissen, P. J. M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101(11), 3397–3414. doi:10.​1021/​cr000115l.CrossRef
Zurück zum Zitat Thayer, D. W., & David, C. A. (1978). Growth of “seeded” cellulolytic enrichment cultures on mesquite wood. Applied and Environmental Microbiology, 36(2), 291–296. Thayer, D. W., & David, C. A. (1978). Growth of “seeded” cellulolytic enrichment cultures on mesquite wood. Applied and Environmental Microbiology, 36(2), 291–296.
Zurück zum Zitat Ting, C. L., Makarov, D. E., & Wang, Z.-G. (2009). A kinetic model for the enzymatic action of cellulase. The Journal of Physical Chemistry B, 113(14), 4970–4977. doi:10.1021/jp810625k.CrossRef Ting, C. L., Makarov, D. E., & Wang, Z.-G. (2009). A kinetic model for the enzymatic action of cellulase. The Journal of Physical Chemistry B, 113(14), 4970–4977. doi:10.​1021/​jp810625k.CrossRef
Zurück zum Zitat Trostle, R. (2008). Global agricultural supply and demand: Factors contributing to the recent increase in food commodity prices. Trostle, R. (2008). Global agricultural supply and demand: Factors contributing to the recent increase in food commodity prices.
Zurück zum Zitat Vaaje-Kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Sørlie, M., et al. (2010). An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 330(6001), 219–222. doi:10.1126/science.1192231.CrossRef Vaaje-Kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Sørlie, M., et al. (2010). An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 330(6001), 219–222. doi:10.​1126/​science.​1192231.CrossRef
Zurück zum Zitat Valášková, V., & Baldrian, P. (2006). Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Research in Microbiology, 157(2), 119–124. doi:10.1016/j.resmic.2005.06.004.CrossRef Valášková, V., & Baldrian, P. (2006). Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Research in Microbiology, 157(2), 119–124. doi:10.​1016/​j.​resmic.​2005.​06.​004.CrossRef
Zurück zum Zitat Vandamme, E. J. (2001). Recent advances in carbohydrate bioengineering. Edited by HJ Gilbert, GJ Davies, B Henrissat and B Svensson, Royal Society of Chemistry, Cambridge, 1999, 312 pp, price UK $ 69.50. ISBN 0 85404 774 3. Journal of Chemical Technology & Biotechnology, 76(1), 106–107. doi:10.1002/1097-4660(200101)76:1<106::aid-jctb351>3.0.co;2-h.CrossRef Vandamme, E. J. (2001). Recent advances in carbohydrate bioengineering. Edited by HJ Gilbert, GJ Davies, B Henrissat and B Svensson, Royal Society of Chemistry, Cambridge, 1999, 312 pp, price UK $ 69.50. ISBN 0 85404 774 3. Journal of Chemical Technology & Biotechnology, 76(1), 106–107. doi:10.1002/1097-4660(200101)76:1<106::aid-jctb351>3.0.co;2-h.CrossRef
Zurück zum Zitat Verardi, A., Bari, I., Ricca, E., & Calabro, V. (2012). Hydrolysis of lignocellulosic biomass: Current status of processes and technologies and future perspectives. In M. A. P. Lima, A. P. P. Natalense (Ed.), Bioethanol. Verardi, A., Bari, I., Ricca, E., & Calabro, V. (2012). Hydrolysis of lignocellulosic biomass: Current status of processes and technologies and future perspectives. In M. A. P. Lima, A. P. P. Natalense (Ed.), Bioethanol.
Zurück zum Zitat Viikari, L., Alapuranen, M., Puranen, T., Vehmaanperä, J., & Siika-aho, M. (2007). Thermostable enzymes in lignocellulose hydrolysis. Advances in Biochemical Engineering and Biotechnology, 108, 121–145. Viikari, L., Alapuranen, M., Puranen, T., Vehmaanperä, J., & Siika-aho, M. (2007). Thermostable enzymes in lignocellulose hydrolysis. Advances in Biochemical Engineering and Biotechnology, 108, 121–145.
Zurück zum Zitat Viikari, L., Tenkanen, M., Buchert, J., Ratto, M., Bailey, M., Siika-Aho, M., et al. (1993). Hemicellulases for industrial applications. In J. N. Saddler (Ed.), Bioconversion of forest and agricultural plant residues (pp. 132–182). Wallingford: CAB International. Viikari, L., Tenkanen, M., Buchert, J., Ratto, M., Bailey, M., Siika-Aho, M., et al. (1993). Hemicellulases for industrial applications. In J. N. Saddler (Ed.), Bioconversion of forest and agricultural plant residues (pp. 132–182). Wallingford: CAB International.
Zurück zum Zitat Volynets, B., & Dahman, Y. (2011). Assessment of pretreatments and enzymatic hydrolysis of wheat straw as a sugar source for bioprocess industry. International Journal of Energy and Environment, 2(3), 427–446. Volynets, B., & Dahman, Y. (2011). Assessment of pretreatments and enzymatic hydrolysis of wheat straw as a sugar source for bioprocess industry. International Journal of Energy and Environment, 2(3), 427–446.
Zurück zum Zitat Wang, L., Yan, W., Chen, J., Huang, F., & Gao, P. (2008). Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation. Science in China Series C: Life Sciences, 51(3), 214–221. doi:10.1007/s11427-008-0033-9.CrossRef Wang, L., Yan, W., Chen, J., Huang, F., & Gao, P. (2008). Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation. Science in China Series C: Life Sciences, 51(3), 214–221. doi:10.​1007/​s11427-008-0033-9.CrossRef
Zurück zum Zitat Xiao, Y., Tu, X., Wang, J., Zhang, M., Cheng, Q., Zeng, W., et al. (2003). Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Applied Microbiology and Biotechnology, 60(6), 700–707. doi:10.1007/s00253-002-1169-3.CrossRef Xiao, Y., Tu, X., Wang, J., Zhang, M., Cheng, Q., Zeng, W., et al. (2003). Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Applied Microbiology and Biotechnology, 60(6), 700–707. doi:10.​1007/​s00253-002-1169-3.CrossRef
Zurück zum Zitat Xie, G., Bruce, D. C., Challacombe, J. F., Chertkov, O., Detter, J. C., Gilna, P., et al. (2007). Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Applied and Environmental Microbiology, 73(11), 3536–3546. doi:10.1128/aem.00225-07.CrossRef Xie, G., Bruce, D. C., Challacombe, J. F., Chertkov, O., Detter, J. C., Gilna, P., et al. (2007). Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Applied and Environmental Microbiology, 73(11), 3536–3546. doi:10.​1128/​aem.​00225-07.CrossRef
Zurück zum Zitat Xiong, H., Turunen, O., Pastinen, O., Leisola, M., & Weymarn, N. (2004). Improved xylanase production by Trichoderma reesei grown on l-arabinose and lactose or d-glucose mixtures. Applied Microbiology and Biotechnology, 64(3), 353–358. doi:10.1007/s00253-003-1548-4.CrossRef Xiong, H., Turunen, O., Pastinen, O., Leisola, M., & Weymarn, N. (2004). Improved xylanase production by Trichoderma reesei grown on l-arabinose and lactose or d-glucose mixtures. Applied Microbiology and Biotechnology, 64(3), 353–358. doi:10.​1007/​s00253-003-1548-4.CrossRef
Zurück zum Zitat Xu, C., Ma, F., & Zhang, X. (2009). Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. Journal of Bioscience and Bioengineering, 108(5), 372–375. doi:10.1016/j.jbiosc.2009.04.023.CrossRef Xu, C., Ma, F., & Zhang, X. (2009). Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. Journal of Bioscience and Bioengineering, 108(5), 372–375. doi:10.​1016/​j.​jbiosc.​2009.​04.​023.CrossRef
Zurück zum Zitat Xu, H., Scott, G. M., Jiang, F., & Kelly, C. (2010). Recombinant manganese peroxidase (rMnP) from Pichia pastoris. Part 1: Kraft pulp delignification. Holzforschung, 64, 137–143. Xu, H., Scott, G. M., Jiang, F., & Kelly, C. (2010). Recombinant manganese peroxidase (rMnP) from Pichia pastoris. Part 1: Kraft pulp delignification. Holzforschung, 64, 137–143.
Zurück zum Zitat Xu, Q., Singh, A., & Himmel, M. E. (2009). Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Current Opinion in Biotechnology, 20(3), 364–371. doi:10.1016/j.copbio.2009.05.006.CrossRef Xu, Q., Singh, A., & Himmel, M. E. (2009). Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Current Opinion in Biotechnology, 20(3), 364–371. doi:10.​1016/​j.​copbio.​2009.​05.​006.CrossRef
Zurück zum Zitat Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Isolation of a cellulolytic enzyme producing microorganism, culture conditions and some properties of the enzymes (microbiology & fermentation industry). Agricultural and Biological Chemistry, 51(1), 65–74. Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Isolation of a cellulolytic enzyme producing microorganism, culture conditions and some properties of the enzymes (microbiology & fermentation industry). Agricultural and Biological Chemistry, 51(1), 65–74.
Zurück zum Zitat Yoon, J. J., Cha, C. J., Kim, Y. S., Son, D. W., & Kim, Y. K. (2007). The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology, 17(5), 800–805. Yoon, J. J., Cha, C. J., Kim, Y. S., Son, D. W., & Kim, Y. K. (2007). The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology, 17(5), 800–805.
Zurück zum Zitat Yoshida, H. (1883). LXIII.-Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society, Transactions, 43, 472–486. doi:10.1039/ct8834300472.CrossRef Yoshida, H. (1883). LXIII.-Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society, Transactions, 43, 472–486. doi:10.​1039/​ct8834300472.CrossRef
Zurück zum Zitat Zhang, L., Liu, Y., Niu, X., Liu, Y., & Liao, W. (2012). Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass and Bioenergy, 37, 16–24. doi:10.1016/j.biombioe.2011.12.044.CrossRef Zhang, L., Liu, Y., Niu, X., Liu, Y., & Liao, W. (2012). Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass and Bioenergy, 37, 16–24. doi:10.​1016/​j.​biombioe.​2011.​12.​044.CrossRef
Zurück zum Zitat Zhou, J., Wang, Y.-H., Chu, J., Zhuang, Y.-P., Zhang, S.-L., & Yin, P. (2008). Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100–14. Bioresource Technology, 99(15), 6826–6833. doi:10.1016/j.biortech.2008.01.077.CrossRef Zhou, J., Wang, Y.-H., Chu, J., Zhuang, Y.-P., Zhang, S.-L., & Yin, P. (2008). Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100–14. Bioresource Technology, 99(15), 6826–6833. doi:10.​1016/​j.​biortech.​2008.​01.​077.CrossRef
Metadaten
Titel
Role of Microorganisms in Lignocellulosic Biodegradation
verfasst von
Vandana Rana
Diwakar Rana
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47379-6_2