Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Role of Spin Crossover and Other Physicochemical Transformations in the Lower Mantle

verfasst von : Felix V. Kaminsky

Erschienen in: The Earth's Lower Mantle

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Extremely high PT conditions in the lower mantle affect some basic physicochemical properties of elements in minerals. One of the most important is a spin transition, which significantly changes the properties of iron-containing minerals in lower-mantle associations. The iron high-spin to low-spin transition in ferropericlase occurs at depths of 1000–1500 km. It is accompanied by the reduction of the unit cell volume and corresponding seismic velocity variations. However, the spin crossover in ferropericlase is a seismologically transparent transition owing to its gradual nature. Incorporation of iron in bridgmanite is more complex than in ferropericlase. Fe2+ in the A site remains in the HS state at all mantle conditions. In contrast, Fe3+ undergoes a spin transition in the entire range of lower-mantle conditions. The iron spin transition in bridgmanite does not change the existing seismological model down to the D″ layer. Under high-pressure conditions, chemical elements can obtain dramatic new properties in the lower mantle, including the formation of unexpected crystal structures and completely new counter-intuitive compounds. Some of these compounds are confirmed experimentally. Most of these transformations may occur within the lower mantle in specific compositions, which may produce only accessory mineralization. However, they may play a significant role in the Earth’s balance of light elements, in the formation of the primordial carbonatitic association, and influence some major lower-mantle phases, such as periclase with the formation of magnesium peroxide MgO2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antonangeli, D., Siebert, J., Aracne, C. M., Farber, D. L., Bosak, A., Hoesch, M., et al. (2011). Spin crossover in ferropericlase at high pressure: A seismologically transparent transition? Science, 331, 64–67.CrossRef Antonangeli, D., Siebert, J., Aracne, C. M., Farber, D. L., Bosak, A., Hoesch, M., et al. (2011). Spin crossover in ferropericlase at high pressure: A seismologically transparent transition? Science, 331, 64–67.CrossRef
Zurück zum Zitat Badro, J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V. V., Vankó, G., et al. (2003). Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300(5620), 789–791.CrossRef Badro, J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V. V., Vankó, G., et al. (2003). Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300(5620), 789–791.CrossRef
Zurück zum Zitat Badro, J., Struzhkin, V. V., Shu, J., Hemley, R. J., Mao, H. K., Ruef, J. P., et al. (2004). Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305, 383–386.CrossRef Badro, J., Struzhkin, V. V., Shu, J., Hemley, R. J., Mao, H. K., Ruef, J. P., et al. (2004). Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305, 383–386.CrossRef
Zurück zum Zitat Bengtson, A., Li, J., & Morgan, D. (2009). Mössbauer modeling to interpret the spin sate of iron in (Mg, Fe)SiO3. Geophysical Research Letters, 36, L15301.CrossRef Bengtson, A., Li, J., & Morgan, D. (2009). Mössbauer modeling to interpret the spin sate of iron in (Mg, Fe)SiO3. Geophysical Research Letters, 36, L15301.CrossRef
Zurück zum Zitat Bolvin, H., & Kahn, O. (1995). Using model for low-spin high-spin transitions in molecular compounds; within and beyond the mean-field approximation. Chemical Physics, 192, 295–305.CrossRef Bolvin, H., & Kahn, O. (1995). Using model for low-spin high-spin transitions in molecular compounds; within and beyond the mean-field approximation. Chemical Physics, 192, 295–305.CrossRef
Zurück zum Zitat Burns, R. G. (1993). Mineralogical application of crystal field theory (2nd ed., p. 529). Cambridge, New York, etc: Cambridge University Press.CrossRef Burns, R. G. (1993). Mineralogical application of crystal field theory (2nd ed., p. 529). Cambridge, New York, etc: Cambridge University Press.CrossRef
Zurück zum Zitat Cammarano, F., Marquardt, H., Speziale, S., & Tackley, P. J. (2010). Role of iron-spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle? Geophysical Research Letters, 37, L03308. doi:10.1029/2009GL041583 CrossRef Cammarano, F., Marquardt, H., Speziale, S., & Tackley, P. J. (2010). Role of iron-spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle? Geophysical Research Letters, 37, L03308. doi:10.​1029/​2009GL041583 CrossRef
Zurück zum Zitat Caracas, R., Ozawa, H., Hirose, K., Ishii, H., Hiraoka, N., Ohishi, Y., et al. (2014). Identifying the spin transition in Fe2+-rich MgSiO3 perovskite from X-ray diffraction and vibrational spectroscopy. American Mineralogist, 99, 1270–1276.CrossRef Caracas, R., Ozawa, H., Hirose, K., Ishii, H., Hiraoka, N., Ohishi, Y., et al. (2014). Identifying the spin transition in Fe2+-rich MgSiO3 perovskite from X-ray diffraction and vibrational spectroscopy. American Mineralogist, 99, 1270–1276.CrossRef
Zurück zum Zitat Catalli, K., Shim, S.-H., Dera, P., Prakapenka, V. B., Zhao, J., Sturhahn, W., et al. (2011). Effects of the Fe3+ spin transition on the properties of aluminous perovskite—new insights for lower-mantle seismic heterogeneities. Earth and Planetary Science Letters, 310, 293–302.CrossRef Catalli, K., Shim, S.-H., Dera, P., Prakapenka, V. B., Zhao, J., Sturhahn, W., et al. (2011). Effects of the Fe3+ spin transition on the properties of aluminous perovskite—new insights for lower-mantle seismic heterogeneities. Earth and Planetary Science Letters, 310, 293–302.CrossRef
Zurück zum Zitat Catalli, K., Shim, S. H., Prakapenka, V. B., Zhao, J., Sturhahn, W., Chow, P., et al. (2010). Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth and Planetary Science Letters, 289, 68–75.CrossRef Catalli, K., Shim, S. H., Prakapenka, V. B., Zhao, J., Sturhahn, W., Chow, P., et al. (2010). Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth and Planetary Science Letters, 289, 68–75.CrossRef
Zurück zum Zitat Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., et al. (2015). High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. American Mineralogist, 100(11–12), 2670–2681.CrossRef Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., et al. (2015). High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. American Mineralogist, 100(11–12), 2670–2681.CrossRef
Zurück zum Zitat Dong, X., Oganov, A. R., Goncharov, A. F., Stavrou, E., Lobanov, S., Saleh, G., et al. (2014). Stable compound of helium and sodium at high pressure. arXiv: 1309.3827. Dong, X., Oganov, A. R., Goncharov, A. F., Stavrou, E., Lobanov, S., Saleh, G., et al. (2014). Stable compound of helium and sodium at high pressure. arXiv: 1309.3827.
Zurück zum Zitat Dong, X., Oganov, A. R., Qian, G., Zhou, X.-F., Zhu, Q., & Wang, H.-T. (2015a) How do chemical properties of the atoms change under pressure? arXiv: 1503.00230. Dong, X., Oganov, A. R., Qian, G., Zhou, X.-F., Zhu, Q., & Wang, H.-T. (2015a) How do chemical properties of the atoms change under pressure? arXiv: 1503.00230.
Zurück zum Zitat Dorfman, S. M., Badro, J., Rueff, J.-P., Chow, P., Xiao, Y., & Gillet, P. (2015). Composition dependence of spin transition in (Mg, Fe)SiO3 bridgmanite. American Mineralogist, 100, 2246–2253.CrossRef Dorfman, S. M., Badro, J., Rueff, J.-P., Chow, P., Xiao, Y., & Gillet, P. (2015). Composition dependence of spin transition in (Mg, Fe)SiO3 bridgmanite. American Mineralogist, 100, 2246–2253.CrossRef
Zurück zum Zitat Dorfman, S. M., Prakapenka, V. B., Meng, Y., & Duffy, T. S. (2012). Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. Journal Geophysical Research, 117, B08210. Dorfman, S. M., Prakapenka, V. B., Meng, Y., & Duffy, T. S. (2012). Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. Journal Geophysical Research, 117, B08210.
Zurück zum Zitat Dubrovinsky, L., Narygina, O., & Kantor, I. (2010). Effect of spin transitions in iron on structure and properties of mantle minerals. In E. Boldyreva & P. Dera (Eds.), High-pressure crystallography: From fundamental phenomena to technological applications (614 pp). Springer, Dordrecht. doi: 10.1007/978-90-481-9258-8_20 Dubrovinsky, L., Narygina, O., & Kantor, I. (2010). Effect of spin transitions in iron on structure and properties of mantle minerals. In E. Boldyreva & P. Dera (Eds.), High-pressure crystallography: From fundamental phenomena to technological applications (614 pp). Springer, Dordrecht. doi: 10.​1007/​978-90-481-9258-8_​20
Zurück zum Zitat Duffy, T. S., Hemley, R. J., & Mao, H.-K. (1995). Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. Physical Review Letters, 74, 1371–1375.CrossRef Duffy, T. S., Hemley, R. J., & Mao, H.-K. (1995). Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. Physical Review Letters, 74, 1371–1375.CrossRef
Zurück zum Zitat Fei, Y., Zhang, L., Corgne, A., Watson, H. C., Ricolleau, A., Meng, Y., et al. (2007). Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophysical Research Letters, 34, L17307. doi:10.1029/2007GL030712 CrossRef Fei, Y., Zhang, L., Corgne, A., Watson, H. C., Ricolleau, A., Meng, Y., et al. (2007). Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophysical Research Letters, 34, L17307. doi:10.​1029/​2007GL030712 CrossRef
Zurück zum Zitat Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.CrossRef Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.CrossRef
Zurück zum Zitat Fujino, K., Nishio-Hamane, D., Seto, Y., Sata, N., Nagai, T., Shinmei, T., et al. (2012). Spin transition of ferric iron in Al-bearing Mg–perovskite up to 200 GPa and its implication for the lower mantle. Earth and Planetary Science Letters, 317–318, 407–412.CrossRef Fujino, K., Nishio-Hamane, D., Seto, Y., Sata, N., Nagai, T., Shinmei, T., et al. (2012). Spin transition of ferric iron in Al-bearing Mg–perovskite up to 200 GPa and its implication for the lower mantle. Earth and Planetary Science Letters, 317–318, 407–412.CrossRef
Zurück zum Zitat Fyfe, W. S. (1960). The possibility of d-electron coupling in olivine at high pressures. Geochimica et Cosmochimica Acta, 19, 141–143.CrossRef Fyfe, W. S. (1960). The possibility of d-electron coupling in olivine at high pressures. Geochimica et Cosmochimica Acta, 19, 141–143.CrossRef
Zurück zum Zitat Goncharov, A. F., Haugen, B. D., Struzhkin, V. V., Beck, P., & Jacobsen, S. D. (2008). Radiative conductivity in the Earth’s lower mantle. Nature, 456, 231–234. doi:10.1038/nature07412 CrossRef Goncharov, A. F., Haugen, B. D., Struzhkin, V. V., Beck, P., & Jacobsen, S. D. (2008). Radiative conductivity in the Earth’s lower mantle. Nature, 456, 231–234. doi:10.​1038/​nature07412 CrossRef
Zurück zum Zitat Grocholski, B., Shim, S. H., Sturhahn, W., Zhao, J., Xiao, Y., & Chow, P. C. (2009). Spin and valence states of iron in (Mg0.8Fe0.2)SiO3 perovskite. Geophysical Research Letters, 36, L24303.CrossRef Grocholski, B., Shim, S. H., Sturhahn, W., Zhao, J., Xiao, Y., & Chow, P. C. (2009). Spin and valence states of iron in (Mg0.8Fe0.2)SiO3 perovskite. Geophysical Research Letters, 36, L24303.CrossRef
Zurück zum Zitat Hsu, H., Blaha, P., Cococcioni, M., & Wentzcovitch, R. M. (2011). Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Physical Review Letters, 106, 118501.CrossRef Hsu, H., Blaha, P., Cococcioni, M., & Wentzcovitch, R. M. (2011). Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Physical Review Letters, 106, 118501.CrossRef
Zurück zum Zitat Hsu, H., Umemoto, K., Wentzcovitch, R. M., & Blaha, P. (2010). Spin states and hyperfine interactions of iron in (Mg, Fe)SiO3 perovskite under pressure. Earth Planet Sci. Lett., 294, 19–26.CrossRef Hsu, H., Umemoto, K., Wentzcovitch, R. M., & Blaha, P. (2010). Spin states and hyperfine interactions of iron in (Mg, Fe)SiO3 perovskite under pressure. Earth Planet Sci. Lett., 294, 19–26.CrossRef
Zurück zum Zitat Hsu, H., & Wentzcovitch, R. M. (2014). First-principles study of intermediate-spin ferrous iron in the Earth’s lower mantle. Physical Review B, 90(19), 195205.CrossRef Hsu, H., & Wentzcovitch, R. M. (2014). First-principles study of intermediate-spin ferrous iron in the Earth’s lower mantle. Physical Review B, 90(19), 195205.CrossRef
Zurück zum Zitat Hsu, H., Yu, Y. G., & Wentzcovitch, R. M. (2012). Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth and Planetary Science Letters, 359–360, 34–39.CrossRef Hsu, H., Yu, Y. G., & Wentzcovitch, R. M. (2012). Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth and Planetary Science Letters, 359–360, 34–39.CrossRef
Zurück zum Zitat Jackson, J. M., Sturhahn, W., Shen, G., Zhao, J., Hu, M. Y., Errandonea, D., et al. (2005). A synchrotron Mössbauer spectroscopy study of (Mg, Fe)SiO3 perovskite up to 120 GPa. American Mineralogist, 90, 199–205.CrossRef Jackson, J. M., Sturhahn, W., Shen, G., Zhao, J., Hu, M. Y., Errandonea, D., et al. (2005). A synchrotron Mössbauer spectroscopy study of (Mg, Fe)SiO3 perovskite up to 120 GPa. American Mineralogist, 90, 199–205.CrossRef
Zurück zum Zitat Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., & Thomas, R. (2009). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.CrossRef Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., & Thomas, R. (2009). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.CrossRef
Zurück zum Zitat Kaminsky, F. V., Wirth, R., & Schreiber, A. (2013). Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 669–688.CrossRef Kaminsky, F. V., Wirth, R., & Schreiber, A. (2013). Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 669–688.CrossRef
Zurück zum Zitat Kantor, I. Y., Dubrovinsky, L. S., & McCammon, C. A. (2006). Spin crossover in (Mg, Fe)O: A Mössbauer effect study with an alternative interpretation of x-ray emission spectroscopy data. Physical Review B, 73, 100101(R).CrossRef Kantor, I. Y., Dubrovinsky, L. S., & McCammon, C. A. (2006). Spin crossover in (Mg, Fe)O: A Mössbauer effect study with an alternative interpretation of x-ray emission spectroscopy data. Physical Review B, 73, 100101(R).CrossRef
Zurück zum Zitat Kupenko, I., McCammon, C., Sinmyo, R., Cerantola, V., Potapkin, V., Chumakov, A. I., et al. (2015). Oxidation state of the lower mantle: In situ observations of the iron electronic configuration in bridgmanite at extreme conditions. Earth and Planetary Science Letters, 423, 78–86. doi:10.1016/j.epsl.2015.04.027 CrossRef Kupenko, I., McCammon, C., Sinmyo, R., Cerantola, V., Potapkin, V., Chumakov, A. I., et al. (2015). Oxidation state of the lower mantle: In situ observations of the iron electronic configuration in bridgmanite at extreme conditions. Earth and Planetary Science Letters, 423, 78–86. doi:10.​1016/​j.​epsl.​2015.​04.​027 CrossRef
Zurück zum Zitat Lavina, B., Dera, P., Downs, R. T., Prakapenka, V., Rivers, M., Sutton, S., et al. (2009). Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophysical Research Letters, 36, L23306.CrossRef Lavina, B., Dera, P., Downs, R. T., Prakapenka, V., Rivers, M., Sutton, S., et al. (2009). Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophysical Research Letters, 36, L23306.CrossRef
Zurück zum Zitat Lavina, B., Dera, P., Downs, R. T., Tschauner, O., Yang, W. E., Shebanova, O., et al. (2010a). Effect of dilution on the spin pairing transition in rhom-bohedral carbonates. High Pressure Research, 30, 224–229.CrossRef Lavina, B., Dera, P., Downs, R. T., Tschauner, O., Yang, W. E., Shebanova, O., et al. (2010a). Effect of dilution on the spin pairing transition in rhom-bohedral carbonates. High Pressure Research, 30, 224–229.CrossRef
Zurück zum Zitat Lavina, B., Dera, P., Downs, R. T., Yang, W. G., Sinogeikin, S., Meng, Y., et al. (2010b). Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Physical Review B 82, 064110.CrossRef Lavina, B., Dera, P., Downs, R. T., Yang, W. G., Sinogeikin, S., Meng, Y., et al. (2010b). Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Physical Review B 82, 064110.CrossRef
Zurück zum Zitat Li, J. (2013). Electronic transitions and spin states in the lower mantle. In K. Hirose, J. Brodholt, T. Lay, & D. Yuen (Eds.), Post-Perovskite: The last mantle phase transition. Geophysical monograph 174 (pp. 47–68). Washington, DC: American Geophysical Union. Li, J. (2013). Electronic transitions and spin states in the lower mantle. In K. Hirose, J. Brodholt, T. Lay, & D. Yuen (Eds.), Post-Perovskite: The last mantle phase transition. Geophysical monograph 174 (pp. 47–68). Washington, DC: American Geophysical Union.
Zurück zum Zitat Li, L., Brodholt, J. P., Stackhouse, S., Weidner, D. J., Alfredsson, M., & Price, G. D. (2005). Electronic spin state of ferric iron in Al-bearing perovskite in the lower mantle. Geophysical Research Letters, 32, L17307. doi:10.1029/2005/GL023045 Li, L., Brodholt, J. P., Stackhouse, S., Weidner, D. J., Alfredsson, M., & Price, G. D. (2005). Electronic spin state of ferric iron in Al-bearing perovskite in the lower mantle. Geophysical Research Letters, 32, L17307. doi:10.​1029/​2005/​GL023045
Zurück zum Zitat Li, D., Oganov, A. R., Dong, X., Zhou, X.-F., Zhu, Q., Qian, G., et al. (2015a). Nitrogen oxides under pressure: Stability, ionization, polymerization, and superconductivity. Scientific Reports, 5 16311. doi:10.1038/srep16311 CrossRef Li, D., Oganov, A. R., Dong, X., Zhou, X.-F., Zhu, Q., Qian, G., et al. (2015a). Nitrogen oxides under pressure: Stability, ionization, polymerization, and superconductivity. Scientific Reports, 5 16311. doi:10.​1038/​srep16311 CrossRef
Zurück zum Zitat Li, J., Struzhkin, V. V., Mao, H. K., Shu, J., Hemley, R. J., Fei, Y., et al. (2004). Electronic spin state of iron in lower mantle perovskite. Proceedings of the National Academy of Sciences of the United States of America, 101, 14027–14030.CrossRef Li, J., Struzhkin, V. V., Mao, H. K., Shu, J., Hemley, R. J., Fei, Y., et al. (2004). Electronic spin state of iron in lower mantle perovskite. Proceedings of the National Academy of Sciences of the United States of America, 101, 14027–14030.CrossRef
Zurück zum Zitat Li, J., Sturhahn, W., Jackson, J. M., Struzhkin, V. V., Lin, J. F., Zhao, J., et al. (2006). Pressure effect on the electronic structure of iron in (Mg, Fe)(Si, Al)O3 perovskite: a combined synchrotron Mössbauer and X-ray emission spectroscopy study up to 100 GPa. Physics Chemistry Minerals, 33, 575–585.CrossRef Li, J., Sturhahn, W., Jackson, J. M., Struzhkin, V. V., Lin, J. F., Zhao, J., et al. (2006). Pressure effect on the electronic structure of iron in (Mg, Fe)(Si, Al)O3 perovskite: a combined synchrotron Mössbauer and X-ray emission spectroscopy study up to 100 GPa. Physics Chemistry Minerals, 33, 575–585.CrossRef
Zurück zum Zitat Li, Y.-L., Wang, S.-N., Oganov, A. R., Gou, H., Smith, J. S., & Strobel, T. A. (2015b). Investigation of exotic stable calcium carbides using theory and experiment. Nature Communications, 6, 6974. doi:10.1038/ncomms7974 CrossRef Li, Y.-L., Wang, S.-N., Oganov, A. R., Gou, H., Smith, J. S., & Strobel, T. A. (2015b). Investigation of exotic stable calcium carbides using theory and experiment. Nature Communications, 6, 6974. doi:10.​1038/​ncomms7974 CrossRef
Zurück zum Zitat Lin, J. F., Gavriliuk, A. G., Struzhkin, V. V., Jacobsen, S. D., Sturhahn, W., Hu, M., et al. (2006). Pressure-induced electronic spin transition of iron in magnesiowüstite-(Mg, Fe)O. Physical Review B, 73, 113107.CrossRef Lin, J. F., Gavriliuk, A. G., Struzhkin, V. V., Jacobsen, S. D., Sturhahn, W., Hu, M., et al. (2006). Pressure-induced electronic spin transition of iron in magnesiowüstite-(Mg, Fe)O. Physical Review B, 73, 113107.CrossRef
Zurück zum Zitat Lin, J.-F., Gavriliuk, A. G., Sturhahn, W., Jacobsen, S. D., Zhao, J., Lerche, M., et al. (2009). Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures. American Mineralogist, 94, 594–599.CrossRef Lin, J.-F., Gavriliuk, A. G., Sturhahn, W., Jacobsen, S. D., Zhao, J., Lerche, M., et al. (2009). Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures. American Mineralogist, 94, 594–599.CrossRef
Zurück zum Zitat Lin, J.-F., Jacobsen, S. D., & Wentzcovitch, R. M. (2007). Electronic spin transition of iron in the Earth’s deep mantle. Eos Transactions American Geophysical Union 88(2), 13, 17. Lin, J.-F., Jacobsen, S. D., & Wentzcovitch, R. M. (2007). Electronic spin transition of iron in the Earth’s deep mantle. Eos Transactions American Geophysical Union 88(2), 13, 17.
Zurück zum Zitat Lin, J.-F., Liu, J., Jacobs, C., & Prakapenka, V. B. (2012). Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. American Mineralogist, 97, 583–591.CrossRef Lin, J.-F., Liu, J., Jacobs, C., & Prakapenka, V. B. (2012). Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. American Mineralogist, 97, 583–591.CrossRef
Zurück zum Zitat Lin, J.-F., Speciale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51(2), 244–275.CrossRef Lin, J.-F., Speciale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51(2), 244–275.CrossRef
Zurück zum Zitat Lin, J.-F., Speziale, S., Prakapenka, V., Dera, P., Lavina, B., & Watson, H. (2010). High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures. High Pressure Research, 30, 230–237.CrossRef Lin, J.-F., Speziale, S., Prakapenka, V., Dera, P., Lavina, B., & Watson, H. (2010). High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures. High Pressure Research, 30, 230–237.CrossRef
Zurück zum Zitat Lin, J.- F., Struzhkin, V. V., Jacobsen, S. D., Hu, M. Y., Chow, P., King, J., et al. (2005) Spin transition of iron in magnesiowüstite in Earth’s lower mantle. Nature 436, 377–380 Lin, J.- F., Struzhkin, V. V., Jacobsen, S. D., Hu, M. Y., Chow, P., King, J., et al. (2005) Spin transition of iron in magnesiowüstite in Earth’s lower mantle. Nature 436, 377–380
Zurück zum Zitat Lin, J.-F., & Tsuchiya, T. (2008). Spin transition of iron in the Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 170, 248–259.CrossRef Lin, J.-F., & Tsuchiya, T. (2008). Spin transition of iron in the Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 170, 248–259.CrossRef
Zurück zum Zitat Lin, J.-F., Watson, H., Vankó, G., Alp, E. E., Prakapenka, V. B., Dera, P., et al. (2008). Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nature Geoscience, 1, 688–691.CrossRef Lin, J.-F., Watson, H., Vankó, G., Alp, E. E., Prakapenka, V. B., Dera, P., et al. (2008). Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nature Geoscience, 1, 688–691.CrossRef
Zurück zum Zitat Lin, J.-F., & Wheat, A. (2012). Electronic spin transition of iron in the Earth’s lower mantle. Hyperfine Interactions, 207, 81–88.CrossRef Lin, J.-F., & Wheat, A. (2012). Electronic spin transition of iron in the Earth’s lower mantle. Hyperfine Interactions, 207, 81–88.CrossRef
Zurück zum Zitat Liu, J., Lin, J. F., Mao, Z., & Prakapenka, V. B. (2014). Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. American Mineralogist, 99, 84–93.CrossRef Liu, J., Lin, J. F., Mao, Z., & Prakapenka, V. B. (2014). Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. American Mineralogist, 99, 84–93.CrossRef
Zurück zum Zitat Liu, J., Lin, J.-F., & Prakapenka, V. B. (2015a). High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Scientific Reports, 5, 7640.CrossRef Liu, J., Lin, J.-F., & Prakapenka, V. B. (2015a). High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Scientific Reports, 5, 7640.CrossRef
Zurück zum Zitat Liu, Y., Oganov, A. R., Wang, S., Zhu, Q., Dong, X., & Kresse, G. (2015b). Prediction of new thermodynamically stable aluminum oxides. Scientific Reports, 5, 9518. doi:10.1038/srep09518 CrossRef Liu, Y., Oganov, A. R., Wang, S., Zhu, Q., Dong, X., & Kresse, G. (2015b). Prediction of new thermodynamically stable aluminum oxides. Scientific Reports, 5, 9518. doi:10.​1038/​srep09518 CrossRef
Zurück zum Zitat Lobanov, S. S., Goncharov, A. F., & Litasov, K. D. (2015a). Optical properties of siderite (FeCO3) across the spin transition: Crossover to iron-rich carbonates in the lower mantle. American Mineralogist, 100, 1059–1064.CrossRef Lobanov, S. S., Goncharov, A. F., & Litasov, K. D. (2015a). Optical properties of siderite (FeCO3) across the spin transition: Crossover to iron-rich carbonates in the lower mantle. American Mineralogist, 100, 1059–1064.CrossRef
Zurück zum Zitat Lobanov, S. S., Zhu, Q., Holtgrewe, N., Prescher, C., Prakapenka, V. B., Oganov, A. R., et al. (2015b). Stable magnesium peroxide at high pressure. Scientific Reports, 5, 13582. doi:10.1038/srep13582 CrossRef Lobanov, S. S., Zhu, Q., Holtgrewe, N., Prescher, C., Prakapenka, V. B., Oganov, A. R., et al. (2015b). Stable magnesium peroxide at high pressure. Scientific Reports, 5, 13582. doi:10.​1038/​srep13582 CrossRef
Zurück zum Zitat Lyakhov, A. O., Oganov, A. R., Stokes, H. T., & Zhu, Q. (2013). New developments in evolutionary structure prediction algorithm USPEX. Computer Physics Communications, 184, 1172–1182.CrossRef Lyakhov, A. O., Oganov, A. R., Stokes, H. T., & Zhu, Q. (2013). New developments in evolutionary structure prediction algorithm USPEX. Computer Physics Communications, 184, 1172–1182.CrossRef
Zurück zum Zitat Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009). Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science, 324(5924), 224–226.CrossRef Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009). Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science, 324(5924), 224–226.CrossRef
Zurück zum Zitat Mattila, A., Pylkkanen, T., Rueff, J. P., Huotari, S., Vanko, G., Hanfland, M., et al. (2007). Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. Journal of Physics-Condensed Matter, 19, 386206.CrossRef Mattila, A., Pylkkanen, T., Rueff, J. P., Huotari, S., Vanko, G., Hanfland, M., et al. (2007). Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. Journal of Physics-Condensed Matter, 19, 386206.CrossRef
Zurück zum Zitat McCammon, C. (2006). Microscopic properties to macroscopic behavior: The influence of iron electronic states. Journal of Mineralogical and Petrological Sciences, 101, 130–144.CrossRef McCammon, C. (2006). Microscopic properties to macroscopic behavior: The influence of iron electronic states. Journal of Mineralogical and Petrological Sciences, 101, 130–144.CrossRef
Zurück zum Zitat McCammon, C. A., Dubrovinsky, L., Narygina, O., Kantor, I., Wu, X., Glazyrin, K., et al. (2010). Low-spin Fe2+ in silicate perovskite and a possible layer at the base of the lower mantle. Physics of the Earth and Planetary Interiors, 180, 215–221.CrossRef McCammon, C. A., Dubrovinsky, L., Narygina, O., Kantor, I., Wu, X., Glazyrin, K., et al. (2010). Low-spin Fe2+ in silicate perovskite and a possible layer at the base of the lower mantle. Physics of the Earth and Planetary Interiors, 180, 215–221.CrossRef
Zurück zum Zitat McCammon, C., Kantor, I., Narygina, O., Roquette, J., Ponkratz, U., Sergueev, I., et al. (2008). Stable intermediate spin ferrous iron in lower mantle perovskite. Nature Geoscience, 1(10), 684–687. doi:10.1038/ngeo309 CrossRef McCammon, C., Kantor, I., Narygina, O., Roquette, J., Ponkratz, U., Sergueev, I., et al. (2008). Stable intermediate spin ferrous iron in lower mantle perovskite. Nature Geoscience, 1(10), 684–687. doi:10.​1038/​ngeo309 CrossRef
Zurück zum Zitat Merlini, M., Crichton, W., Hanfland, M., Gemmi, M., Müller, H., & Kupenko, I. (2012). Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceedings of the National Academy of Sciences of the U.S.A. 109, 13509–13514. Merlini, M., Crichton, W., Hanfland, M., Gemmi, M., Müller, H., & Kupenko, I. (2012). Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceedings of the National Academy of Sciences of the U.S.A. 109, 13509–13514.
Zurück zum Zitat Müller, J., Speziale, S., Efthimiopoulos, I., Jahn, S., & Koch-Müller, M. (2016). Raman spectroscopy of siderite at high pressure: Evidence for a sharp spin transition. American Mineralogist, 101, 2638–2644. doi:10.2138/am-2016-5708 CrossRef Müller, J., Speziale, S., Efthimiopoulos, I., Jahn, S., & Koch-Müller, M. (2016). Raman spectroscopy of siderite at high pressure: Evidence for a sharp spin transition. American Mineralogist, 101, 2638–2644. doi:10.​2138/​am-2016-5708 CrossRef
Zurück zum Zitat Narigina, O., Mattesini, M., Kantor, I., Pascarelli, S., Wu, X., Aquilanti, G., et al. (2009). High-pressure experimental and computational XANES studies of (Mg, Fe)(Si, Al)O3 perovskite and (Mg, Fe)O ferropericlase as in the Earth’s lower mantle. Physical Review B, 79, 174115.CrossRef Narigina, O., Mattesini, M., Kantor, I., Pascarelli, S., Wu, X., Aquilanti, G., et al. (2009). High-pressure experimental and computational XANES studies of (Mg, Fe)(Si, Al)O3 perovskite and (Mg, Fe)O ferropericlase as in the Earth’s lower mantle. Physical Review B, 79, 174115.CrossRef
Zurück zum Zitat Niu, H., Oganov, A. R., Chen, X.-Q., & Li, D. (2015). Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures. Scientific Reports, 5, 18347. doi:10.1038/srep18347 CrossRef Niu, H., Oganov, A. R., Chen, X.-Q., & Li, D. (2015). Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures. Scientific Reports, 5, 18347. doi:10.​1038/​srep18347 CrossRef
Zurück zum Zitat Oganov, A. R. (Ed.). (2010). Modern methods of crystal structure prediction. Berlin: Wiley-VCN. ISBN 978-3-527-40939-6. Oganov, A. R. (Ed.). (2010). Modern methods of crystal structure prediction. Berlin: Wiley-VCN. ISBN 978-3-527-40939-6.
Zurück zum Zitat Ohnishi, S. (1978). A theory of the pressure-induced high-spin–low-spin transition of transition metal oxides. Physics of the Earth and Planetary Interiors, 17, 130–139.CrossRef Ohnishi, S. (1978). A theory of the pressure-induced high-spin–low-spin transition of transition metal oxides. Physics of the Earth and Planetary Interiors, 17, 130–139.CrossRef
Zurück zum Zitat Ohta, K., Hirose, K., Shimizu, K., Sata, N., & Ohishi, Y. (2010). The electrical resistance measurements of (Mg, Fe)SiO3 perovskite at high pressures and implications for electronic spin transition of iron. Physics of the Earth and Planetary Interiors, 180, 154–158.CrossRef Ohta, K., Hirose, K., Shimizu, K., Sata, N., & Ohishi, Y. (2010). The electrical resistance measurements of (Mg, Fe)SiO3 perovskite at high pressures and implications for electronic spin transition of iron. Physics of the Earth and Planetary Interiors, 180, 154–158.CrossRef
Zurück zum Zitat Ozawa, H., Hirose, K., Ohta, K., Ishii, H., Hiraoka, N., Ohishi, Y., et al. (2011). Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. Physical Review B, 84, 134417.CrossRef Ozawa, H., Hirose, K., Ohta, K., Ishii, H., Hiraoka, N., Ohishi, Y., et al. (2011). Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. Physical Review B, 84, 134417.CrossRef
Zurück zum Zitat Potapkin, V., Chumakov, A. I., Smirnov, G. V., Celse, J. P., Rüffer, R., McCammon, C., et al. (2012). The 57Fe synchrotron Mössbauer source at the ESRF. Journal of Synchrotron Radiation, 19, 559–569. doi:10.1107/S0909049512015579 CrossRef Potapkin, V., Chumakov, A. I., Smirnov, G. V., Celse, J. P., Rüffer, R., McCammon, C., et al. (2012). The 57Fe synchrotron Mössbauer source at the ESRF. Journal of Synchrotron Radiation, 19, 559–569. doi:10.​1107/​S090904951201557​9 CrossRef
Zurück zum Zitat Potapkin, V., McCammon, C., Glazyrin, K., Kantor, A., Kupenko, I., Prescher, C., et al. (2013). Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nature Communications, 4, 1427. doi:10.1038/ncomms2436 CrossRef Potapkin, V., McCammon, C., Glazyrin, K., Kantor, A., Kupenko, I., Prescher, C., et al. (2013). Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nature Communications, 4, 1427. doi:10.​1038/​ncomms2436 CrossRef
Zurück zum Zitat Saleh, G., & Oganov, A. R. (2016). Alkali subhalides: High-pressure stability and interplay between metallic and ionic bonds. Physical Chemistry Chemical Physics: PCCP, 18, 2840–2849. doi:10.1039/c5cp06026e CrossRef Saleh, G., & Oganov, A. R. (2016). Alkali subhalides: High-pressure stability and interplay between metallic and ionic bonds. Physical Chemistry Chemical Physics: PCCP, 18, 2840–2849. doi:10.​1039/​c5cp06026e CrossRef
Zurück zum Zitat Shen, Y., Oganov, A. R., Qian, G., Zhang, J., Dong, H., Zhu, Q., et al. (2015). Novel lithium-nitrogen compounds at ambient and high pressures. Scientific Reports, 5, 14204. doi:10.1038/srep14204 CrossRef Shen, Y., Oganov, A. R., Qian, G., Zhang, J., Dong, H., Zhu, Q., et al. (2015). Novel lithium-nitrogen compounds at ambient and high pressures. Scientific Reports, 5, 14204. doi:10.​1038/​srep14204 CrossRef
Zurück zum Zitat Shi, H., Luo, W., Johansson, B., & Ahuja, R. (2008). First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. Physical Review B, 78, 155119.CrossRef Shi, H., Luo, W., Johansson, B., & Ahuja, R. (2008). First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. Physical Review B, 78, 155119.CrossRef
Zurück zum Zitat Shukla, G., & Wentzcovitch, R. M. (2016). Spin crossover in (Mg, Fe3+)(Si, Fe3+)O3 bridgmanite: Effects of disorder, iron concentration, and temperature. Physics of the Earth and Planetary Interiors, 260, 53–61. doi:10.1016/j.pepi.2016.09.003 CrossRef Shukla, G., & Wentzcovitch, R. M. (2016). Spin crossover in (Mg, Fe3+)(Si, Fe3+)O3 bridgmanite: Effects of disorder, iron concentration, and temperature. Physics of the Earth and Planetary Interiors, 260, 53–61. doi:10.​1016/​j.​pepi.​2016.​09.​003 CrossRef
Zurück zum Zitat Solomatova, N. V., Jackson, J. M., Sturhahn, W., Wicks, J. K., Zhao, J., Toellner, T. S., et al. (2016). Equation of state and spin crossover of (Mg, Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary. American Mineralogist, 101, 1084–1093. doi:10.2138/am-2016-5510 CrossRef Solomatova, N. V., Jackson, J. M., Sturhahn, W., Wicks, J. K., Zhao, J., Toellner, T. S., et al. (2016). Equation of state and spin crossover of (Mg, Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary. American Mineralogist, 101, 1084–1093. doi:10.​2138/​am-2016-5510 CrossRef
Zurück zum Zitat Speziale, S., Lee, V. E., Clark, S. M., Lin, J. F., Pasternak, M. P., & Jeanloz, R. (2007). Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowuustites and implications for the seismological properties of the Earth’s lower mantle. Journal of Geophysical Research, 112, B10212. doi:10.1029/2006JB004730 CrossRef Speziale, S., Lee, V. E., Clark, S. M., Lin, J. F., Pasternak, M. P., & Jeanloz, R. (2007). Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowuustites and implications for the seismological properties of the Earth’s lower mantle. Journal of Geophysical Research, 112, B10212. doi:10.​1029/​2006JB004730 CrossRef
Zurück zum Zitat Speziale, S., Milner, A., Lee, V. E., Clark, S. M., Pasternak, M. P., & Jeanloz, R. (2005). Iron spin transition in Earth’s mantle. Proceedings of the National Academy of Sciences, 102, 17918–17922.CrossRef Speziale, S., Milner, A., Lee, V. E., Clark, S. M., Pasternak, M. P., & Jeanloz, R. (2005). Iron spin transition in Earth’s mantle. Proceedings of the National Academy of Sciences, 102, 17918–17922.CrossRef
Zurück zum Zitat Stackhouse S., Brodholt, J., Dobson, D. P., & Price, G. D. (2006). Electronic spin transitions and the seismic properties of ferrous iron-bearing MgSiO3 post-perovskite. Geophysical Research Letters, 33, L12S03. doi 10.1029/2005GL025589 Stackhouse S., Brodholt, J., Dobson, D. P., & Price, G. D. (2006). Electronic spin transitions and the seismic properties of ferrous iron-bearing MgSiO3 post-perovskite. Geophysical Research Letters, 33, L12S03. doi 10.​1029/​2005GL025589
Zurück zum Zitat Stackhouse, S., Brodholt, J. P., & Price, G. D. (2007). Electronic spin transitions in iron-bearing MgSiO3 perovskite. Earth and Planetary Science Letters, 253, 282–290.CrossRef Stackhouse, S., Brodholt, J. P., & Price, G. D. (2007). Electronic spin transitions in iron-bearing MgSiO3 perovskite. Earth and Planetary Science Letters, 253, 282–290.CrossRef
Zurück zum Zitat Tsuchiya, T., & Wang, X. (2013). Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. Journal of Geophysical Research, 118, 83–91. doi:10.1029/2012JB009696 Tsuchiya, T., & Wang, X. (2013). Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. Journal of Geophysical Research, 118, 83–91. doi:10.​1029/​2012JB009696
Zurück zum Zitat Tsuchiya, T., Wentzcovitch, R. M., da Silva, C. R. S., & de Gironcoli, S. (2006). Spin transition in magnesiowüstite in Earth’s lower mantle. Physical Review Letters, 96, 198501. doi:10.1029/2012JB009696 CrossRef Tsuchiya, T., Wentzcovitch, R. M., da Silva, C. R. S., & de Gironcoli, S. (2006). Spin transition in magnesiowüstite in Earth’s lower mantle. Physical Review Letters, 96, 198501. doi:10.​1029/​2012JB009696 CrossRef
Zurück zum Zitat Umemoto, K., Wentzcovitch, R. M., Yu, Y. G., & Requist, R. (2008). Spin transition in (Mg, Fe)SiO3 perovskite under pressure. Earth and Planetary Science Letters, 276, 198–206.CrossRef Umemoto, K., Wentzcovitch, R. M., Yu, Y. G., & Requist, R. (2008). Spin transition in (Mg, Fe)SiO3 perovskite under pressure. Earth and Planetary Science Letters, 276, 198–206.CrossRef
Zurück zum Zitat Vanpeteghem, C., Angel, R., Ross, N., Jacobsen, S., Dobson, D., Litasov, K., et al. (2006). Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155(1–2), 96–103.CrossRef Vanpeteghem, C., Angel, R., Ross, N., Jacobsen, S., Dobson, D., Litasov, K., et al. (2006). Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155(1–2), 96–103.CrossRef
Zurück zum Zitat Wentzcovitch, R. M., Justo, J. F., Wu, Z., da Silva, C. R. S., Yuen, D. A., & Kohlstedt, D. (2009). Anomalous compressibility of ferropericlase throughout the iron spin cross-over. Proceedings of the National Academy of Sciences of the United States of America, 106, 8447–8452.CrossRef Wentzcovitch, R. M., Justo, J. F., Wu, Z., da Silva, C. R. S., Yuen, D. A., & Kohlstedt, D. (2009). Anomalous compressibility of ferropericlase throughout the iron spin cross-over. Proceedings of the National Academy of Sciences of the United States of America, 106, 8447–8452.CrossRef
Zurück zum Zitat Wu, Z., Wentzcovitch, R. M. (2014). Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proceedings of the National Academy of Sciences of the U.S.A, 111, 10468–10472. Wu, Z., Wentzcovitch, R. M. (2014). Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proceedings of the National Academy of Sciences of the U.S.A, 111, 10468–10472.
Zurück zum Zitat Wu, Y., Wu, X., Lin, J.-F., McCammon, C. A., Xiao, Y., Chow, P., et al. (2016). Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted slabs in the lower mantle. Earth and Planetary Science Letters, 434, 91–100.CrossRef Wu, Y., Wu, X., Lin, J.-F., McCammon, C. A., Xiao, Y., Chow, P., et al. (2016). Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted slabs in the lower mantle. Earth and Planetary Science Letters, 434, 91–100.CrossRef
Zurück zum Zitat Yang, J., Tong, X., Lin, J.-F., Okuchi, T., & Tomioka, N. (2015). Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Scientific Reports, 5, 17188. doi:10.1038/srep17188 CrossRef Yang, J., Tong, X., Lin, J.-F., Okuchi, T., & Tomioka, N. (2015). Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Scientific Reports, 5, 17188. doi:10.​1038/​srep17188 CrossRef
Zurück zum Zitat Yoo, C. S., Maddox, B., Klepeis, J.-H. P., Iota, V., Evans, W., McMahan, A., et al. (2005). First-order isostructural Mott transition in highly compressed MnO. Physical Review Letters, 94, 115503.CrossRef Yoo, C. S., Maddox, B., Klepeis, J.-H. P., Iota, V., Evans, W., McMahan, A., et al. (2005). First-order isostructural Mott transition in highly compressed MnO. Physical Review Letters, 94, 115503.CrossRef
Zurück zum Zitat Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzera, B. (2016). High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264–273. doi:10.1016/j.epsl.2015.11.030 CrossRef Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzera, B. (2016). High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264–273. doi:10.​1016/​j.​epsl.​2015.​11.​030 CrossRef
Zurück zum Zitat Zhang, F., & Oganov, A. R. (2006). Valence state and spin transitions of iron in Earth’s mantle silicates. Earth and Planetary Science Letters, 249, 436–443.CrossRef Zhang, F., & Oganov, A. R. (2006). Valence state and spin transitions of iron in Earth’s mantle silicates. Earth and Planetary Science Letters, 249, 436–443.CrossRef
Zurück zum Zitat Zhang, W., Oganov, A. R., Goncharov, A. F., Zhu, Q., Boulfelfel, S. E., Lyakhov, A. O., et al. (2013). Unexpected stable stoichiometries of sodium chlorides. Science, 342, 1502–1506.CrossRef Zhang, W., Oganov, A. R., Goncharov, A. F., Zhu, Q., Boulfelfel, S. E., Lyakhov, A. O., et al. (2013). Unexpected stable stoichiometries of sodium chlorides. Science, 342, 1502–1506.CrossRef
Zurück zum Zitat Zhang, J., Oganov, A. R., Li, X., Xue, K.-H., Wang, Z., & Dong, H. (2015). Pressure-induced novel compounds in the Hf–O system from first-principles calculations. Physical Review B, 92, 184104. doi:10.1103/PhysRevB.92.184104 CrossRef Zhang, J., Oganov, A. R., Li, X., Xue, K.-H., Wang, Z., & Dong, H. (2015). Pressure-induced novel compounds in the Hf–O system from first-principles calculations. Physical Review B, 92, 184104. doi:10.​1103/​PhysRevB.​92.​184104 CrossRef
Zurück zum Zitat Zhu, Q., Jung, D. Y., Oganov, A. R., Glass, C. W., Gatti, C., & Lyakhov, A. O. (2013a). Stability of xenon oxides at high pressures. Nature Chemistry, 5, 61–65.CrossRef Zhu, Q., Jung, D. Y., Oganov, A. R., Glass, C. W., Gatti, C., & Lyakhov, A. O. (2013a). Stability of xenon oxides at high pressures. Nature Chemistry, 5, 61–65.CrossRef
Zurück zum Zitat Zhu, Q., Oganov, A. R., & Lyakhov, A. O. (2013b). Novel stable compounds in the Mg–O system under high pressure. Physical Chemistry Chemical Physics, 15, 7696–7700.CrossRef Zhu, Q., Oganov, A. R., & Lyakhov, A. O. (2013b). Novel stable compounds in the Mg–O system under high pressure. Physical Chemistry Chemical Physics, 15, 7696–7700.CrossRef
Metadaten
Titel
Role of Spin Crossover and Other Physicochemical Transformations in the Lower Mantle
verfasst von
Felix V. Kaminsky
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55684-0_8