Skip to main content
Erschienen in: Cellulose 1/2014

01.02.2014 | Original Paper

Roles of xyloglucan and pectin on the mechanical properties of bacterial cellulose composite films

verfasst von: Jin Gu, Jeffrey M. Catchmark

Erschienen in: Cellulose | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Xyloglucan and pectin are major non-cellulosic components of most primary plant cell walls. It is believed that xyloglucan and perhaps pectin are functioning as tethers between cellulose microfibrils in the cell walls. In order to understand the role of xyloglucan and pectin in cell wall mechanical properties, model cell wall composites created using Gluconacetobacter xylinus cellulose or cellulose nanowhiskers (CNWs) derived there from with different amounts of xyloglucan and/or pectin have been prepared and measured under extension conditions. Compared with pure CNW films, CNW composites with lower amounts of xyloglucan or pectin did not show significant differences in mechanical behavior. Only when the additives were as high as 60 %, the films exhibited a slightly lower Young’s modulus. However, when cultured with xyloglucan or pectin, the bacterial cellulose (BC) composites produced by G. xylinus showed much lower modulus compared with that of the pure BC films. Xyloglucan was able to further reduce the modulus and extensibility of the film compared to that of pectin. It is proposed that surface coating or tethering of xyloglucan or pectin of cellulose microfibrils does not alone affect the mechanical properties of cell wall materials. The implication from this work is that xyloglucan or pectin alters the mechanical properties of cellulose networks during rather than after the cellulose biosynthesis process, which impacts the nature of the connection between these compounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, Taylor & Francis Group, New York Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, Taylor & Francis Group, New York
Zurück zum Zitat Blaker JJ, Lee K-Y, Li X, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem 11(9):1321–1326CrossRef Blaker JJ, Lee K-Y, Li X, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem 11(9):1321–1326CrossRef
Zurück zum Zitat Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704CrossRef Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704CrossRef
Zurück zum Zitat Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40(2):137–143CrossRef Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40(2):137–143CrossRef
Zurück zum Zitat Carpita NC, Gibeaut DM (1993) Structural models of primary-cell walls in flowering plants—consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3(1):1–30CrossRef Carpita NC, Gibeaut DM (1993) Structural models of primary-cell walls in flowering plants—consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3(1):1–30CrossRef
Zurück zum Zitat Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20(1):25–35CrossRef Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20(1):25–35CrossRef
Zurück zum Zitat Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38(1):27–37CrossRef Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38(1):27–37CrossRef
Zurück zum Zitat Cosgrove DJ (1989) Characterization of long-term extension of isolated cell-walls from growing cucumber hypocotyls. Planta 177(1):121–130CrossRef Cosgrove DJ (1989) Characterization of long-term extension of isolated cell-walls from growing cucumber hypocotyls. Planta 177(1):121–130CrossRef
Zurück zum Zitat Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125(1):131–134CrossRef Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125(1):131–134CrossRef
Zurück zum Zitat Cybulska J, Vanstreels E, Ho QT, Courtin CM, Van Craeyveld V, Nicolai B, Zdunek A, Konstankiewicz K (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96(2):287–294CrossRef Cybulska J, Vanstreels E, Ho QT, Courtin CM, Van Craeyveld V, Nicolai B, Zdunek A, Konstankiewicz K (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96(2):287–294CrossRef
Zurück zum Zitat Dammstrom S, Salmen L, Gatenholm P (2005) The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46(23):10364–10371CrossRef Dammstrom S, Salmen L, Gatenholm P (2005) The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46(23):10364–10371CrossRef
Zurück zum Zitat de Souza CF, Lucyszyn N, Woehl MA, Riegel-Vidotti IC, Borsali R, Sierakowski MR (2013) Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr Polym 93(1):144–153CrossRef de Souza CF, Lucyszyn N, Woehl MA, Riegel-Vidotti IC, Borsali R, Sierakowski MR (2013) Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr Polym 93(1):144–153CrossRef
Zurück zum Zitat Dick-Perez M, Zhang YA, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989–1000CrossRef Dick-Perez M, Zhang YA, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989–1000CrossRef
Zurück zum Zitat Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40(210):1–11CrossRef Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40(210):1–11CrossRef
Zurück zum Zitat Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282(Pt 3):821–828 Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282(Pt 3):821–828
Zurück zum Zitat Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84(2):327–339CrossRef Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84(2):327–339CrossRef
Zurück zum Zitat Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88(2):547–557CrossRef Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88(2):547–557CrossRef
Zurück zum Zitat Gu J, Catchmark JM (2013) The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose 20:1613–1627CrossRef Gu J, Catchmark JM (2013) The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose 20:1613–1627CrossRef
Zurück zum Zitat Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr Polym 92(2):1809–1816CrossRef Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr Polym 92(2):1809–1816CrossRef
Zurück zum Zitat Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037CrossRef Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037CrossRef
Zurück zum Zitat Hayashi T (1989) Xyloglucans in the primary-cell wall. Ann Rev Plant Physiol Plant Mol Biol 40:139–168CrossRef Hayashi T (1989) Xyloglucans in the primary-cell wall. Ann Rev Plant Physiol Plant Mol Biol 40:139–168CrossRef
Zurück zum Zitat Hayashi T, Kaida R (2011) Functions of xyloglucan in plant cells. Mol Plant 4(1):17–24CrossRef Hayashi T, Kaida R (2011) Functions of xyloglucan in plant cells. Mol Plant 4(1):17–24CrossRef
Zurück zum Zitat Hayashi T, Marsden MPF, Delmer DP (1987) Pea xyloglucan and cellulose. 5. Xyloglucan–cellulose interactions invitro and invivo. Plant Physiol 83(2):384–389CrossRef Hayashi T, Marsden MPF, Delmer DP (1987) Pea xyloglucan and cellulose. 5. Xyloglucan–cellulose interactions invitro and invivo. Plant Physiol 83(2):384–389CrossRef
Zurück zum Zitat Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734CrossRef Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734CrossRef
Zurück zum Zitat Iwata T, Indrarti L, Azuma JI (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5(3):215–228CrossRef Iwata T, Indrarti L, Azuma JI (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5(3):215–228CrossRef
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603CrossRef
Zurück zum Zitat Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York
Zurück zum Zitat Mccann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant-cell wall. J Cell Sci 96:323–334 Mccann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant-cell wall. J Cell Sci 96:323–334
Zurück zum Zitat Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In: Verbelen J-P, Vissenberg K (eds) The expanding cell, vol 6. Plant cell monographs. Springer, Berlin, pp 89–116 Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In: Verbelen J-P, Vissenberg K (eds) The expanding cell, vol 6. Plant cell monographs. Springer, Berlin, pp 89–116
Zurück zum Zitat Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943CrossRef Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943CrossRef
Zurück zum Zitat Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20(6):629–639CrossRef Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20(6):629–639CrossRef
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory, Golden Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory, Golden
Zurück zum Zitat Stiernstedt J, Brumer H, Zhou Q, Teeri TT, Rutland MW (2006a) Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7(7):2147–2153CrossRef Stiernstedt J, Brumer H, Zhou Q, Teeri TT, Rutland MW (2006a) Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7(7):2147–2153CrossRef
Zurück zum Zitat Stiernstedt J, Nordgren N, Wagberg L, Brumer H, Gray DG, Rutland MW (2006b) Friction and forces between cellulose model surfaces: a comparison. J Colloid Interface Sci 303(1):117–123CrossRef Stiernstedt J, Nordgren N, Wagberg L, Brumer H, Gray DG, Rutland MW (2006b) Friction and forces between cellulose model surfaces: a comparison. J Colloid Interface Sci 303(1):117–123CrossRef
Zurück zum Zitat Taiz L, Zeiger E (eds) (2002) Cell walls: structure, biogenesis and expansion. In: Plant physiology. Sinauer Associates, Sunderland, pp 313–338 Taiz L, Zeiger E (eds) (2002) Cell walls: structure, biogenesis and expansion. In: Plant physiology. Sinauer Associates, Sunderland, pp 313–338
Zurück zum Zitat Talbott LD, Ray PM (1992) Molecular-size and separability features of pea cell-wall polysaccharides—implications for models of primary wall structure. Plant Physiol 98(1):357–368CrossRef Talbott LD, Ray PM (1992) Molecular-size and separability features of pea cell-wall polysaccharides—implications for models of primary wall structure. Plant Physiol 98(1):357–368CrossRef
Zurück zum Zitat Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56(419):2275–2285CrossRef Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56(419):2275–2285CrossRef
Zurück zum Zitat Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRef Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRef
Zurück zum Zitat Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9(1):65–74CrossRef Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9(1):65–74CrossRef
Zurück zum Zitat Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49(8):1491–1496CrossRef Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49(8):1491–1496CrossRef
Zurück zum Zitat Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In-vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8(4):491–504CrossRef Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In-vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8(4):491–504CrossRef
Zurück zum Zitat Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121(2):657–663CrossRef Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121(2):657–663CrossRef
Zurück zum Zitat Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am J Bot 93(10):1402–1414CrossRef Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am J Bot 93(10):1402–1414CrossRef
Zurück zum Zitat Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose. 2. Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation. Cellulose 3(4):229–242CrossRef Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose. 2. Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation. Cellulose 3(4):229–242CrossRef
Zurück zum Zitat Yi HJ, Puri VM (2012) Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol 160(3):1281–1292CrossRef Yi HJ, Puri VM (2012) Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol 160(3):1281–1292CrossRef
Zurück zum Zitat Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139(1):397–407CrossRef Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139(1):397–407CrossRef
Metadaten
Titel
Roles of xyloglucan and pectin on the mechanical properties of bacterial cellulose composite films
verfasst von
Jin Gu
Jeffrey M. Catchmark
Publikationsdatum
01.02.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0115-0

Weitere Artikel der Ausgabe 1/2014

Cellulose 1/2014 Zur Ausgabe