Skip to main content

2024 | OriginalPaper | Buchkapitel

Rolling Horizon Co-evolution for Snake AI Competition

verfasst von : Hui Li, Jiayi Zhou, Qingquan Zhang

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Snake game, a classic in the gaming world, gains new dimensions with the Snake AI competition, where two players controlled by AI algorithms can now compete simultaneously in the same game session. This competition holds significance in advancing our understanding of artificial intelligence (AI) algorithms. In the 2020 and 2021 Snake AI competitions, popular algorithms, using graph-based search or heuristic strategies, demonstrate competitive performance, such as the A* algorithm, Monte Carlo Tree Search (MCTS). Contrary to these heuristic approaches, the Rolling Horizon Co-evolution Algorithm (RHCA), characterised by its core principles of rolling horizon evaluation and co-evolution, maintains two populations, one for each player, to co-evolve with each other without reliance on heuristics. RHCA has been verified its effectiveness in a two-player spaceship game. In this paper, we extend the RHCA application to the two-player Snake AI game, comparing it with other state-of-the-art methods. Additionally, we introduce various obstacles to create different complex scenarios, ensuring a comprehensive analysis. Experimental results reveal RHCA’s superior and stable performance, especially in resource-constrained and complex scenarios. Furthermore, an analysis of RHCA’s behaviours across maps with diverse obstacle scenarios highlights its ability to make intelligent decisions in competing with state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brown, J.A., de Araujo, L.J.P., Grichshenko, A.: Snakes AI competition 2020 and 2021 report (2021) Brown, J.A., de Araujo, L.J.P., Grichshenko, A.: Snakes AI competition 2020 and 2021 report (2021)
2.
Zurück zum Zitat Cazenave, T.: Nested monte-carlo search. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 456–461 (2009) Cazenave, T.: Nested monte-carlo search. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 456–461 (2009)
4.
Zurück zum Zitat Gallotta, R., Arulkumaran, K., Soros, L.B.: Preference-learning emitters for mixed-initiative quality-diversity algorithms. IEEE Trans. Games 1–14 (2023) Gallotta, R., Arulkumaran, K., Soros, L.B.: Preference-learning emitters for mixed-initiative quality-diversity algorithms. IEEE Trans. Games 1–14 (2023)
6.
Zurück zum Zitat Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRef Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRef
7.
Zurück zum Zitat Hu, C., Zhao, Y., Wang, Z., Du, H., Liu, J.: Game-based platforms for artificial intelligence research. arXiv preprint arXiv:2304.13269 (2023) Hu, C., Zhao, Y., Wang, Z., Du, H., Liu, J.: Game-based platforms for artificial intelligence research. arXiv preprint arXiv:​2304.​13269 (2023)
8.
Zurück zum Zitat Kobayashi, T.: Reward bonuses with gain scheduling inspired by iterative deepening search. Results Control Optim. 12, 100244 (2023)CrossRef Kobayashi, T.: Reward bonuses with gain scheduling inspired by iterative deepening search. Results Control Optim. 12, 100244 (2023)CrossRef
10.
Zurück zum Zitat Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)MathSciNetCrossRef Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)MathSciNetCrossRef
12.
Zurück zum Zitat Liu, J., Pérez-Liébana, D., Lucas, S.M.: Rolling horizon coevolutionary planning for two-player video games. In: 2016 8th Computer Science and Electronic Engineering (CEEC), pp. 174–179. IEEE (2016) Liu, J., Pérez-Liébana, D., Lucas, S.M.: Rolling horizon coevolutionary planning for two-player video games. In: 2016 8th Computer Science and Electronic Engineering (CEEC), pp. 174–179. IEEE (2016)
14.
Zurück zum Zitat Shashkov, A., Hemberg, E., Tulla, M., O’Reilly, U.M.: Adversarial agent-learning for cybersecurity: a comparison of algorithms. Knowl. Eng. Rev. 38, e3 (2023)CrossRef Shashkov, A., Hemberg, E., Tulla, M., O’Reilly, U.M.: Adversarial agent-learning for cybersecurity: a comparison of algorithms. Knowl. Eng. Rev. 38, e3 (2023)CrossRef
15.
Zurück zum Zitat Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J.: Monte carlo tree search: a review of recent modifications and applications. Artif. Intell. Rev. 56(3), 2497–2562 (2023)CrossRef Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J.: Monte carlo tree search: a review of recent modifications and applications. Artif. Intell. Rev. 56(3), 2497–2562 (2023)CrossRef
16.
Zurück zum Zitat Teng, S., et al.: Motion planning for autonomous driving: the state of the art and future perspectives. IEEE Trans. Intell. Veh. 8(6), 3692–3711 (2023)CrossRef Teng, S., et al.: Motion planning for autonomous driving: the state of the art and future perspectives. IEEE Trans. Intell. Veh. 8(6), 3692–3711 (2023)CrossRef
17.
Zurück zum Zitat Zhang, K., Bai, J., Liu, J.: Generating game levels of diverse behaviour engagement. In: 2022 IEEE Conference on Games (CoG), pp. 167–174 (2022) Zhang, K., Bai, J., Liu, J.: Generating game levels of diverse behaviour engagement. In: 2022 IEEE Conference on Games (CoG), pp. 167–174 (2022)
Metadaten
Titel
Rolling Horizon Co-evolution for Snake AI Competition
verfasst von
Hui Li
Jiayi Zhou
Qingquan Zhang
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_19